• Title/Summary/Keyword: WO$^{\circ}C$ films

Search Result 38, Processing Time 0.028 seconds

Post-annealing Effect of N-incorporated $WO_3$ Films for Photoelectrochemical Cells (광전기화학 전지를 위한 질소 도핑된 $WO_3$ 박막의 후열처리 효과)

  • Ahn, Kwang-Soon
    • Clean Technology
    • /
    • v.15 no.3
    • /
    • pp.202-209
    • /
    • 2009
  • N-incorporated $WO_3$ ($WO_3$:N) films were synthesized using a reactive RF magnetron sputtering on unheated substrate and then post-annealed at different temperatures from 300 to $500^{\circ}C$ in air. The N anion narrowed optical band gap, due to its mixing effect with the O 2p valence states. Furthermore, it was found that the crystallinity of the $WO_3$:N films was significantly improved by the post-annealing at $350^{\circ}C$ and higher. As a result, the $WO_3$:N films exhibited much better photoelectrochemical performance, compared with pure $WO_3$ films post-annealed at the same temperature.

Characteristics of Pd-doped WO3 thin film for hydrogen gas sensor (수소 센서용 Pd 첨가한 WO3 박막의 특성)

  • Kim, Gwang-Ho;Choi, Gwang-Pyo;Kwon, Yong;Park, Jin-Seong
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.120-126
    • /
    • 2006
  • Physicochemical and electrical properties for hydrogen gas sensors based on Pd-deposited $WO_3$ thin films were investigated as a function of Pd thickness, annealing temperature, and operating temperature. $WO_3$ thin films were deposited on an insulating material by thermal evaporator. XRD, FE-SEM, AFM, and XPS were used to evaluate the crystal structure, microstructure, surface roughness, and chemical property, respectively. The deposited films were grown $WO_3$ polycrystalline with rhombohedral structure after annealing at $500^{\circ}C$. The addition effect of Pd is not the crystallinity but the suppression of grain growth of $WO_3$. Pd was scattered an isolated small spherical grain on $WO_3$ thin film after annealing at $500^{\circ}C$ and it was agglomerated as an irregular large grain or diffused into $WO_3$ after annealing at $600^{\circ}C$. 2 nm Pd-deposited $WO_3$ thin films operated at $250^{\circ}C$ showed good response and recovery property.

A Study On the Electrical Characteristic of WO3 and NiO-WO3 Thin Films Prepared by Thermal Evaporation (Thermal Evaporation법에 의해 제조된 WO3 박막과 NiO-WO3박막의 전기적 특성에 관한 연구)

  • Na Eun-young;Na Dong-myong;Park Jin-seong
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.1
    • /
    • pp.32-36
    • /
    • 2005
  • [ $WO_3$ ] and $NiO-WO_3$ thin films were deposited on a Si (100) substrate by using high vacuum thermal evaporation. The effects of various film thicknesses on the surface morphology $WO_3$ and $NiO-WO_3$ thin films were investigated. X-ray diffraction (XRD), Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy(XPS) were employed to characterize the deposited films. The results suggest that as $WO_3$ thin films became thick, their grain grew up to a $0.6{\mu}m$. On the other hand, NiO-doping to $WO_3$ thin films inhibited the grain growth five times less than undoped $WO_3$ thin films. This results show that NiO doping inhibited the grain growing of $WO_3$ thin films. Also, the variation of NOx sensitivity $(R_{NOx}/R_{air})$ to the thickness of $WO_3$ and $NiO-WO_3$ thin films were measured according to the thickness change of thin films and the working temperature of sensor in 5ppm NOx gas. As a result, $NiO-WO_3$ thin films showed more excellent properties than $WO_3$ thin films for NOx sensitivity.

Preparation of $WO_3$ Films by CVD and their Application in Electrochromic Devices (화학기상 증착법을 이용하여 제조된 텅스텐 산화막의 전기변색 소자 응용 연구)

  • Jung, Hun;SunWoo, Changshin;Kim, Do-Heyoung
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.405-410
    • /
    • 2011
  • A study on chemical vapor deposition(CVD) of $WO_3$ and the electrochromic properties of the CVD $WO_3$ films have been carried out. The crystalinity, purity, and growth rate of the films depending on substrate temperatures are investigated. The highest growth rate is $8{\mu}m/min$ at the substrate temperatures above $300^{\circ}C$ and the estimated activation energy for overall film growth is about 45.9 kJ/mol at the temperatures of $225{\sim}275^{\circ}C$, where the CVD process is controlled by a surface reaction kinetics. The films grown below $275^{\circ}C$ are amorphous, while those deposited above $300^{\circ}C$ are crystalline. The effects of thickness and deposition temperature of the $WO_3$ films on electrochromic activity are also investigated. The coloration efficiency of the films increases with increase in film thickness and decrease in deposition temperature.

PREPARATION AND PROPERTIES OF EIECTROCHROMIC WINDOW COATING BY THE SOL-GEL METHOD (졸-겔 방법에 의한 전기적 착색 박막의 제작과 특성)

  • Lee, Kil-Dong
    • Solar Energy
    • /
    • v.12 no.2
    • /
    • pp.18-27
    • /
    • 1992
  • Multilayer coatings of $WO_3$ were deposited by the sol-gel technique on microscope slide glass and ITO coated glass. These films were characterized optically, chemically, and structurally by XRD, spectro-photometry, DTA/TGA, SEM/EDAX and RBS. Uniform $WO_3$ sol-gel films were dip coated on slide glass at dipping speed of 5mm/s. This sample indicated a low near IR transmittance in optical properties as a result of coloration using a dilute HCI electrolyte as the $H^+$ion sources. Differential thermal analysis results have allowed the accurate determination of the formation temperature of the $WO_3$ crystalline phase from the gel data in the range of $380^{\circ}C{\sim}500^{\circ}C$, consistent with crystallization temperature of sol-gel film. RBS spectrometry was performed on the uncolored $WO_3$ sol-gel film, yielding a chemical composition of $WO_3$.

  • PDF

Fabrication and NOx Sensing Characteristics of $WO_{3}$ Based Thick Film Devices Doped with $TiO_{2}$ and Noble Metals ($TiO_{2}$와 귀금속을 첨가한 $WO_{3}$ 후막 센서의 제조 및 NOx 감응 특성)

  • Lee, Dae-Sik;Han, Sang-Do;Son, Young-Mok;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.274-279
    • /
    • 1997
  • NOx sensors using tungsten oxide films as a base material were prepared and their electrical and sensing characteristics have been investigated. The $WO_{3}$ thick films doped with $SnO_{2}$ or $TiO_{2}$ showed higher sensitivity and better sorption characteristics to NOx gas than the pure $WO_{3}$ films material in air at operating temperature of $400^{\circ}C$. By addition of noble catalysts, such as Ru or Au, to the $TiO_{2}-WO_{3}$ thick films, their sensitivity, recovery and selectivity to NOx gas were found to be more enhanced.

  • PDF

Enhanced Electrochromic Performance by Uniform Surface Morphology of Tungsten Oxide Films (텅스텐산화물 막의 균일한 표면 형상에 의한 향상된 전기변색 성능)

  • Kim, Kue-Ho;Koo, Bon-Ryul;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.28 no.7
    • /
    • pp.411-416
    • /
    • 2018
  • Tungsten oxide($WO_3$) films with uniform surface morphology are fabricated using a spin-coating method for applications of electrochromic(EC) devices. To improve the EC performances of the $WO_3$ films, we control the heating rate of the annealing process to 10, 5, and $1^{\circ}C/min$. Compared to the other samples, the $WO_3$ films fabricated at a heating rate of $5^{\circ}C/min$ shows superior EC performances for transmittance modulation(49.5 %), response speeds(8.3 s in a colored state and 11.2 s in a bleached state), and coloration efficiency($37.3cm^2/C$). This performance improvement is mainly related to formation of a uniform surface morphology with increased particle size without any cracks by an optimized annealing heating rate, which improves the electrical conductivity and electrochemical activity of the $WO_3$ films. Thus, the $WO_3$ films with a uniform surface morphology prepared by the optimized annealing heating rate can be used as a potential candidate for performance improvement of the EC devices.

NOx Sensing Characteristics of the $WO_{3}$-Based Thin-Film Gas Sensors (박막형 $WO_{3}$계 가스센서의 NOx 감도 특성)

  • Yoo, Kwang-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.5
    • /
    • pp.39-46
    • /
    • 1996
  • The Pd or Pt-doped $WO_{3}$ thin-film NOx sensor was fabricated. The $WO_{3}$-based thin films as a gas-sensing layer were deposited at ambient temperature in a high-vacuum resistance heated evaporator and annealed at $500^{\circ}C$. The gas sensitivity ($R_{gas}/R_{air}$) to 5 ppm $NO_{2}$ measured at the operating temperature of $300^{\circ}C$ was 50 (highest sensitivity) for the 0.5 wt.% $Pt-WO_{3}$ sensor.

  • PDF

The Optical Properties of WO$_3$Thin Films Deposited by RF Magnetron Reactive Sputtering (RF 마그네트론 반응성 스퍼터링법으로 증착된 WO$_3$박막의 광특성)

  • 이동규;최영규;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.339-342
    • /
    • 1997
  • The optical properties of WO$_3$thin films deposited by RF magnetron reactive sputtering were studied. The substrate was an ITO(indium-tin-oxide) glass(100$\Omega$/ ). The optical properties are examined by different deposition conditions. RF power, substrate temperature, $O_2$concentraction. Ar flow rate, working pressure and thickness are 40~60W, 25~30$0^{\circ}C$, 10%, 54~72sccm, 5~20m7orr and 1200~2400$\AA$, respectively. All these films were colorless, light yellow and found to be amorphous in structure by X-ray diffraction analysis. When RF power, substrate temperature, $O_2$concentraction, Ar flow rate, working pressure and thickness are 40W, $25^{\circ}C$, 10%, 72sccm, 20mTorr and 2400$\AA$, respectively the values of transmittance of the WO$_3$thin films in visible region are about 80%.

  • PDF

Fabrication and Gas-Sensing Characteristics of $NO_x$ Sensors using $WO_3$ Thin Films ($WO_3$ 박막을 이용한 $NO_x$ 센서의 제조 및 가스감도 특성)

  • 유광수;김태송;정형진
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.12
    • /
    • pp.1369-1376
    • /
    • 1995
  • The WO3 thin-film NOx sensor which is of practical use and includes the heater and the temperature sensor was fabricated. The WO3 thin films as a gas-sensing layer was deposited at ambient temperature in a high-vacuum resistance heated evaporator. The highest sensitivity of the WO3 thin-film sensor to NOx was obtained under the condition of the annealing temperature of 50$0^{\circ}C$ and the operating temperature of 30$0^{\circ}C$. The gas sensing characteristics of this sensor was excellent, i.e. high sensitivity (Rgas/Rair in 3 ppm NO2=53) and fast response time (4 seconds).

  • PDF