• Title/Summary/Keyword: WMO

Search Result 113, Processing Time 0.02 seconds

Stratospheric Ozone Observations in Korea

  • Cho, Hi-Ku;Kim, Joon;Chung, Sung-Rae
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.24 no.1
    • /
    • pp.19-27
    • /
    • 1996
  • The ozone layer monitoring program of the Global Environment Laboratory at Yonsei University in Seoul, established as one of the Global Ozone Observing System($GO_3OS$) of the World Meteorological Organization(WMO), has been carried out daily by measuring total ozone and its vertical distribution using a Dobson Ozone Spectrophotometer(Beck #124) since 1984. In this paper, we review the organization and the historical background of ozone measurements in Korea, describe data acquisition and analysis systems, and briefly summarize the results from our ozone observations.

  • PDF

Ice Navigation 선박의 성능 조건에 관한 연구

  • Lee, Dong-Seop
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.06a
    • /
    • pp.379-381
    • /
    • 2011
  • 2010년 3월 22일 "Ice Navigation"에 대한 경험과 자료 수집을 위하여 통영항(평택항)과 Sakhalin "Prigorodnoye항"을 운항하는 대한해운 소속의 "K. Jasmine"호를 승선하여 "Prigorodnoye항"에서 LNG $143,700M^3$를 선적하여 "통영항"에서 양하하는 과정을 경험하고 하선하였다. "K. Jasmine"호는 년 150만톤의 LNG 수입을 위한 "한국 ${\leftrightarrow}$ Sakhalin Project"에 투입된 LNG운반선으로서 "Russian Maritime Register of Shipping"의 "Ice Class LU2" 증서를 갖고 있는 선박이다. 이 증서는 선박이 60Cm 두께의 얼음 해역에서 Ice Breaker의 인도 아래 4Knots 이상의 선속을 유지할 수 있음을 보장받고 있다. 운항중 SEIC(Sakhalin Energy Investment Company)에서는 Ice map을 매일 제공하는 하고 있었으며, 이를 참조하여 본선에서는 계획된 항해를 수행하였다. 이 논문에서는 Ice Navigation선박의 성능 조건에 대하여 검토하여 향후 이 항로에 취항하는 선박에 지침이 되고자 한다.

  • PDF

북극해 항로와 빙하해역 선박운항 지침에 대하여

  • Lee, Dong-Seop
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.10a
    • /
    • pp.55-57
    • /
    • 2012
  • Suez운하를 이용할 경우 부산항에서 로테르담항까지의 수송거리가 11,340마일이 북극해 항로를 이용할 경우 6,860마일로 36%가 줄고 수송기간도 10일 이상 단축되므로 북극해항로를 통한 유럽과 아시아간의 상업적인 수송이 이뤄진다면 해운회사들의 물류비용이 대폭 절감될 것으로 전망된다. 이런 시점에서 2011년 9월 한-러 국장급 해운회담이 열렸으며, 2011년 11월 23일 부산 누리마루 APEC House에서 "북극해항로 상업운항의 현황과 전망"이라는 주제로 국제세미나가 개최 되었다. 현재 북극해 항로를 통과한 선박이 2007년 2척, 2008년 3척, 2009년 4척, 2010년 10척이었던 것이 2011년에는 34척 총 82만톤의 통과 수송이 이뤄졌고, 러시아 북극내의 물동량은 2백20만톤에 달할 것으로 전망되었으며, 2012년의 통과 물동량은 100만톤을 상회 할 것으로 전망된다. 이에 북극해 항로에 대한 소개와 빙하지역을 항해하는 선박에 대한 운항지침에 대하여 검토해보고저 한다.

  • PDF

Study for Estimation of PMP and Comparison with previous result (과거 호우를 이용한 PMP 산정결과 및 기존결과와의 비교)

  • Lee, Okjeong;Kim, Sangdan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.539-539
    • /
    • 2015
  • 본 논문에서는 과거 호우를 이용하여 우리나라의 가능최대강수량(Probable Maximum Precipitation, PMP)을 산정하고, 기존의 결과와 비교하고자 한다. 1973년부터 2014년까지 190개의 호우를 선정한 후 WMO(2009)에서 사용된 수문기상학적 방법을 이용하여 면적별($25km^2$, $100km^2$, $225km^2$, $400km^2$, $900km^2$, $2025km^2$, $4900km^2$, $10000km^2$, $19600km^2$), 지속시간별(1, 2, 4, 6, 8, 12, 18, 24, 48, 72시간)로 우리나라의 PMP를 산정하고 계산된 결과를 바탕으로 한강유역, 낙동강유역, 금강유역, 영산강 유역의 PMP를 추정하였다. 또한 2000년에 산정된 PMP와 비교하여 그 값이 얼마만큼 변화되었는지 비교하였다. 또한 약 15년간의 극한강우 사상의 변화와 이에 따른 PMP 값의 변화에 대한 경향성을 평가해 보았다.

  • PDF

Prediction of Adult Emergence Time and Generation Number of Overwintered Small Brown Planthopper, Laodelphax striatellus According to RCP8.5 Climate Change Scenario (RCP8.5 기후변화 시나리오에 따른 애멸구 월동 개체군의 성충 발생시기 및 연간 세대수 변화 예측)

  • Jung, Myung-Pyo;Park, Hong-Hyun;Lee, Sang-Guei;Kim, Kwang-Ho
    • Korean journal of applied entomology
    • /
    • v.52 no.4
    • /
    • pp.427-430
    • /
    • 2013
  • Recently, climate change scenarios were substituted by the Special Report on Emission Scenarios (SRES) for Representative Concentration Pathway (RCP). Using the RCP scenario, the World Meteorological Organization (WMO) produced new climate change scenarios. Further, the National Institute of Meteorological Research (NIMR) of Korea produced new climate change scenarios for the Korean Peninsula. In this study, emergence time of small brown planthopper (SBPH), Laodelphax striatellus and the number of generations a year were estimated during climatic normal year (1981-2010) with previous studies and they were predicted during 2050s (2045-2054) and 2090s (2085-2094) by means of RCP8.5 climate change scenario. In comparison with $176.0{\pm}0.97$ Julian data in the climatic normal year, the emergence time of overwintering SBPH was predicted to be $13.2{\pm}0.18$ days ($162.8{\pm}0.91$ Julian date) earlier in 2050s and $32.1{\pm}0.61$ days ($143.9{\pm}1.08$ Julian date) earlier in 2090s. The SBPH was expected to produce an additional $2.0{\pm}0.02$ generations in 2050s and $5.2{\pm}0.06$ generations in 2090s.

Estimates of Regional Flood Frequency in Korea (우리나라의 빈도홍수량의 추정)

  • Kim, Nam-Won;Won, Yoo-Seung
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.12
    • /
    • pp.1019-1032
    • /
    • 2004
  • Flood frequency estimate is an essential index for determining the scale of small and middle hydraulic structure. However, this flood quantity could not be estimated directly for practical design purpose due to the lack of available flood data, and indirect method like design rainfall-runoff method have been used for the estimation of design flood. To give the good explain for design flood estimates, regional flood frequency analysis was performed by flood index method in this study. First, annual maximum series were constructed by using the collected data which covers from Japanese imperialism period to 1999. Wakeby distribution recommended by WMO(1989) was used for regional flood frequency analysis and L-moment method by Hosking (1990) was used for parameter estimation. For the homogeneity of region, the discordance and heterogeneity test by Hosking and Wallis(1993) was carried for 4 major watersheds in Korea. Physical independent variable correlated with index flood was watershed area. The relationship between specific discharge and watershed area showed a type of power function, i.e. the specific discharge decreases as watershed area increases. So flood quantity according to watershed area and return period was presented for each watershed(Han rivet, Nakdong river, Geum river and Youngsan/Seomjin river) by using this relation type. This result was also compared with the result of point frequency analysis and its regionalization. It was shown that the dam construction couldn't largely affect the variation of peak flood. The property of this study was also examined by comparison with previous studies.

Analysis of Heavy Rain Hazard Risk Based on Local Heavy Rain Characteristics and Hazard Impact (지역 호우특성과 재해영향을 고려한 호우재해위험도 분석)

  • Yoon, Jun-Seong;Koh, June-Hwan
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.1
    • /
    • pp.37-51
    • /
    • 2017
  • Despite the improvement in accuracy of heavy rain forecasting, socioeconomic costs due to heavy rain hazards continue to increase. This is due to a lack of understanding of the effects of weather. In this study, the risk of heavy rain hazard was analyzed using the concepts of hazard, vulnerability, and exposure, which are key concepts of impact forecast presented by WMO. The potential impacts were constructed by the exposure and vulnerability variables, and the hazard index was calculated by selecting three variables according to the criteria of heavy rain warning. Weights of the potential impact index were calculated by using PCA and hazard index was calculated by applying the same weight. Correlation analysis between the potential impact index and damages showed a high correlation and it was confirmed that the potential impact index appropriately reflects the actual damage pattern. The heavy rain hazard risk was estimated by using the risk matrix consisting of the heavy rain potential impact index and the hazard index. This study provides a basis for the impacts analysis study for weather warning with spatial/temporal variation and it can be used as a useful data to establish the local heavy rain hazard prevention measures.

Measurement of Rainfall Intensity Using a Weighting Tipping Bucket Raingauge (중량식 전도형 우량계를 이용한 강우강도 측정)

  • Kim Hyun Chul;Lee Bu Yong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.4
    • /
    • pp.211-217
    • /
    • 2004
  • The instrument used in this study consists of a lkg capacity loadcell and a Imm tipping bucket rain gauge. There are two signals: one is the weight of the water in the tipping bucket and the other is the pulse from the reversing mechanism of the tipping bucket. The loadcell measures the weight of water with a 0.0lmm resolution up to 1mm rainfall and the bucket reverses beyond 1mm. From this point, a pulse signal generates and the loadcell starts measuring the weight again. A field test was carried out with the range of rainfall intensity from 42mm/h to 250mm/h. The result shows an error range from -2.2% to + 2.6% in 12 measurement cases with a rainfall of l00mm or more. This result satisfies the WMO recommendation for rainfall intensity instrumentation which allows a 5% range. In a field experiment during 17 to 19 August, 2004, more than 100mm/h rainfall intensity was observed by this instrument, confirming that our instrument has a sufficient capacity of rainfall intensity measurement under extreme conditions like Jangma (Bai-u season). Compared with existing commercial models which employ a water drop measurement method, our method can give a practical solution for diagnostic check of remote rain gauges using two independent signals.

Impact Assessment of Climate Change on Disaster Risk in North Korea based on RCP8.5 Climate Change Scenario (RCP8.5 기후변화시나리오를 이용한 기후변화가 북한의 재해위험에 미치는 영향 평가)

  • Jeung, Se-Jin;Kim, Byung-Sik;Chae, Soo Kwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.809-818
    • /
    • 2018
  • In this paper, in order to evaluate the impact of future climate change in North Korea, we collected the climate data of each station in North Korea provided by WMO and expanded the lack of time series data. Using the RCP climate change scenario, And the impact of climate change on disasters using local vulnerability to disasters in the event of a disaster. In order to evaluate this, the 11 cities in North Korea were evaluated for Design Rainfall Load, human risk index (HRI), and disaster impact index (DII) at each stage. As a result, Jaffe increased from C grade to B grade in the Future 1 period. At Future 2, North Hwanghae proved to be dangerous as it was, and Gangwon-do and Hwanghae-do provincial grade rose to C grade. In the case of Future 3, Pyongyang City dropped from C grade to D grade, Hamgyong and Gyeongsang City descend from B grade to C grade, Gangwon-do and Jagangdo descend from C grade to D grade and Pyongyang city descend from C grade to D grade. Respectively.

Development of technology to predict the impact of urban inundation due to climate change on urban transportation networks (기후변화에 따른 도시침수가 도시교통네트워크에 미치는 영향 예측 기술 개발)

  • Jeung, Se Jin;Hur, Dasom;Kim, Byung Sik
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1091-1104
    • /
    • 2022
  • Climate change is predicted to increase the frequency and intensity of rainfall worldwide, and the pattern is changing due to inundation damage in urban areas due to rapid urbanization and industrialization. Accordingly, the impact assessment of climate change is mentioned as a very important factor in urban planning, and the World Meteorological Organization (WMO) is emphasizing the need for an impact forecast that considers the social and economic impacts that may arise from meteorological phenomena. In particular, in terms of traffic, the degradation of transport systems due to urban flooding is the most detrimental factor to society and is estimated to be around £100k per hour per major road affected. However, in the case of Korea, even if accurate forecasts and special warnings on the occurrence of meteorological disasters are currently provided, the effects are not properly conveyed. Therefore, in this study, high-resolution analysis and hydrological factors of each area are reflected in order to suggest the depth of flooding of urban floods and to cope with the damage that may affect vehicles, and the degree of flooding caused by rainfall and its effect on vehicle operation are investigated. decided it was necessary. Therefore, the calculation formula of rainfall-immersion depth-vehicle speed is presented using various machine learning techniques rather than simple linear regression. In addition, by applying the climate change scenario to the rainfall-inundation depth-vehicle speed calculation formula, it predicts the flooding of urban rivers during heavy rain, and evaluates possible traffic network disturbances due to road inundation considering the impact of future climate change. We want to develop technology for use in traffic flow planning.