• Title/Summary/Keyword: WLAN Network

Search Result 497, Processing Time 0.019 seconds

Controllable Band-Notched Slot Antenna for UWB Communication Systems

  • Kueathaweekun, Weerathep;Anantrasirichai, Noppin;Benjangkaprasert, Chawalit;Nakasuwan, Jintana;Wakabayashi, Toshio
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.674-683
    • /
    • 2012
  • We propose a slot antenna consisting of a rectangular slot on the ground plane, fed by a microstrip line with a rectangular-ring-shaped tuning stub that can be deployed in ultra-wideband (UWB) communication systems to avoid interference with wireless local area network (WLAN) communication. Our antenna can achieve a single band-notched property from the 5 GHz frequency to the 6 GHz frequency owing to a controllable band notch that uses L- and J-shaped parasitic elements. The antenna characteristics can be modified to tune the band-notched property (4 GHz to 5 GHz or 6 GHz to 7 GHz) and the bandwidth of the band notch (1 GHz to 2 GHz). Furthermore, the shifted notch with enhanced width of the band notch from 1 GHz to 1.5 GHz is described in this paper. The UWB slot antenna and L- and J-shaped parasitic elements also provide the band-rejection function for reference in the WiMAX (3.5 GHz) and WLAN (5 GHz to 6 GHz) regions of the spectrum. Experiment results evidence the return loss performance, radiation patterns, and antenna gains at different operational frequencies.

A Study on the Synchronization Techniques for 5GHz High-speed WLANs (5GHz대역 고속 무선 LAN 시스템을 위한 동기화 기법 연구)

  • 김인겸
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.6C
    • /
    • pp.594-601
    • /
    • 2003
  • High-speed WLAN(Wireless Local Area Network) systems operating in 5GHz band use OFDM transmission technique. OFDM technique transmits data in parallel and has many advantage compared with the serial transmission system-for example, robustness to time variance of channel. OFDM technique use the orthogonal multicarriers. The ICI(InterChannel Interference) caused by the orthogonality destruction between subcarriers. hamper the BER performance. In this paper, we propose the synchronization techniques for high-speed WLAN system designed to support user data rates up to 54Mbps at 5GHz. The proposed synchronization techniques are the reduced complexity structure having the similar performance compared with the conventional synchronization techniques.

An Inverted-F Antenna for 2,4/5 GHz WLAM Applications (2.4/5 GHz 무선랜 대역용 Inverted-F 안테나)

  • Chae, Gyoo-Soo;Cho, Young-Ki;Lim, Joong-Su
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.2
    • /
    • pp.183-187
    • /
    • 2004
  • An inverted-F antenna for wireless local area network(WLAN) is presented. The proposed design is based on the typical dual-band planar inverted-F antennas(PIFA), which have two tunable resonant modes. The low-profile antenna is built by stamping and designed to be mounted on the metal frame of the laptop LCD panel. The obtained antenna can perform in 2.4 GHz and 5 GHz bands and be adopted for other wireless applications. All the measurements are performed in the actual test fixture.

A CMOS Frequency divider for 2.4/5GHz WLAN Applications with a Simplified Structure

  • Yu, Q.;Liu, Y.;Yu, X.P.;Lim, W.M.;Yang, F.;Zhang, X.L.;Peng, Y.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.4
    • /
    • pp.329-335
    • /
    • 2011
  • In this paper, a dual-band integer-N frequency divider is proposed for 2.4/5.2 GHz multi-standard wireless local area networks. It consists of a multi-modulus imbalance phase switching prescaler and two all-stage programmable counters. It is able to provide dual-band operation with high resolution while maintaining a low power consumption. This frequency divider is integrated with a 5 GHz VCO for multi-standard applications. Measurement results show that the VCO with frequency divider can work at 5.2 GHz with a total power consumption of 22 mW.

RRM Optimization for the Throughput Enhancement of WiFi AP (WiFi AP 성능 향상을 위한 무선 자원 관리 최적화)

  • Jeong, Kil Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.131-136
    • /
    • 2012
  • In these days, with the diffusion of mobile equipments, the number of WiFi Access Point (AP) is increasing, and the growth of WiFi AP causes the throughput degradation due to interferences between APs. This recent phenomenon demands the method able to be utilized with current WiFi network to improve the throughput of Wireless LANs. This paper studied the channel assignment method and several throughput enhancement methods to optimize Radio Resource Management (RRM) for distributed infrastructure WLANs. As a result, it was able to put AP independently, improve older allocation error, and improve execution speed.

Improving TCP Performance for Downward Vertical Handover (하향식 수직적 핸드오버를 위한 무선 TCP 성능 향상 기법과 성능 분석)

  • Kim, Ho-Jin;Lee, Su-Kyoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10B
    • /
    • pp.638-643
    • /
    • 2007
  • Interconnecting wireless local area networks (WLANs) with third generation (3G) cellular networks has become an issue of great interest. However, a Vertical Handover (VHO) causes an abrupt change in link bandwidth. Due to such a change, TCP triggers unnecessary fast retransmission during a Downward VHO (DVHO) from a cellular network to a WLAN, causing throughput degradation. Thus, we propose a new reordering mechanism for DVHO that suppresses unnecessary retransmission due to the spurious duplicate acknowledgments. We analytically investigate the throughput of TCP in the literature and our proposed scheme. Through the numerical and simulation results, it is shown that our proposed TCP achieves better performance in terms of throughput, compared with Nodupack with SACK.

Effective Performance Evaluation of IEEE 802.11 WLAN DCF Under Normal Conditions (IEEE 802.11 무선랜 DCF의 정상상태에서의 효과적인 성능 분석)

  • Lee, Kye-Sang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.2
    • /
    • pp.261-266
    • /
    • 2009
  • We analyze the performances of the DCF, which is the medium access control protocol of IEEE 802.11 WLAN, assuming normal traffic condition. There have been much less research efforts under the normal condition than those under the saturated one. This paper proposes an analytical method of approximating the transmission attempt rate under normal condition as proportional to that under saturated condition. In result, we show that we can obtain the transmission attempt rate and the packet collision probability which quickly converge using iterative computations of relatively simple equations, and using these results we derive the network throughput and medium access delay. Numerical results show that our method is much less complex than those based on the Markov Chain while it can predict the performances quite accurately.

Design and implementation of planar UWB antenna with dual band rejection characteristics

  • Woon Geun Yang;Tae Hyeon Nam
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.109-115
    • /
    • 2023
  • In this paper, we design and implement an Ultra-Wide Band (UWB, 3.1~10.6 GHz) antenna with 5G mobile communication (3.42~3.70 GHz) and Wireless Local Area Network (WLAN, 5.15~5.825 GHz) bands rejection characteristics. The proposed antenna consists of a planar radiation patch with two slots. The upper slot contributes to reject 5G mobile communication band and the lower slot contributes to reject WLAN band. The Voltage Standing Wave Ratio (VSWR) values of the proposed antenna show good performances in whole UWB band except for rejection bands based on VSWR 2.0. The proposed UWB antenna was simulated using High Frequency Struture Simulator (HFSS) by Ansoft. The simulated antenna showed dual rejection bands of 3.31~3.92 GHz and 5.04~5.90 GHz in UWB band, and measured antenna showed dual rejection bands of 3.35~3.97 GHz and 5.06~5.97 GHz. The largest VSWR values measured at each rejection band are 13.60 at 3.64 GHz and 10.25 at 5.52 GHz. The measured maximum gain is 5.31 dBi at 10.00 GHz. The lowest gains for the measured antenna at rejection bands are -8.73 dBi at 3.70 GHz and -4.36 dBi at 5.56 GHz.

Ubiquitous u-Health System using RFID & ZigBee (RFID와 ZigBee를 이용한 유비쿼터스 u-Health 시스템 구현)

  • Kim Jin-Tai;Kwon Youngmi
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.1 s.343
    • /
    • pp.79-88
    • /
    • 2006
  • In this paper, we designed and implemented ubiquitous u-Health system using RFE and ZigBee. We made a wireless protocol Kit which combines RFE Tag recognition and ZigBee data communication capability. The software is designed and developed on the TinyOS. Wireless communication technologies which hold multi-protocol stacks with RFID and result in the wireless ubiquitous world could be Bluetooth, ZigBee, 802.11x WLAN and so on. The environments that the suggested u-Health system may be used is un-manned nursing, which would be utilized in dense sensor networks such as a hospital. The the size of devices with RFID and ZigBee will be so smaller and smaller as a bracelet, a wrist watch and a ring. The combined wireless RFID-ZigBee system could be applied to applications which requires some actions corresponding to the collected (or sensed) information in WBAN(Wireless Body Area Network) and/or WPAN(Wireless Person Area Network). The proposed ubiquitous u-Health system displays some text-type alert message on LCD which is attached to the system or gives voice alert message to the adequate node users. RFE will be used as various combinations with other wireless technologies for some application-specific purposes.

Enhanced MAC Scheme to Support QoS Based on Network Detection over Wired-cum-Wireless Network

  • Kim, Moon;Ye, Hwi-Jin;Cho, Sung-Joon
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.4
    • /
    • pp.141-146
    • /
    • 2006
  • In these days, wireless data services are becoming ubiquitous in our daily life because they offers several fundamental benefits including user mobility, rapid installation, flexibility, and scalability. Moreover, the requests for various multimedia services and the Quality of Service (QoS) support have been one of key issues in wireless data communications. Therefore the research relative to Medium Access Control (MAC) has been progressing rapidly. Especially a number of QoS-aware MAC schemes have been introduced to extend the legacy IEEE 802.11 MAC protocol which has not guaranteed any service differentiation. However, none of those schemes fulfill both QoS features and channel efficiency although these support the service differentiation based on priority. Therefore this paper studies a novel MAC scheme, referred to as Enhanced Distributed Coordination Function with Network Adaptation (EDCF-NA), for enhancements of both QoS and medium efficiency. It uses a smart factor denoted by ACK rate and Network Load Threshold (TH). In this paper, we study how the value of TH has effect on MAC performance and how the use of optimal TH pair improves the overall MAC performance in terms of the QoS, channel utilization, collision rate, and fairness. In addition, we evaluate and compare both the performance of EDCF-NA depending on several pairs of TH and the achievement of various MAC protocols through simulations by using Network Simulator-2 (NS-2).