• Title/Summary/Keyword: WAVELETS

Search Result 268, Processing Time 0.021 seconds

Linear System Analysis Using Wavelets Transform: Application to Ultrasonic Signal Analysis (웨이브렛 변환을 이용한 선형시스템 분석: 초음파 신호 해석의 응용)

  • Joo, Young Bok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.77-83
    • /
    • 2020
  • The Linear system analysis for physical system is very powerful tool for system diagnostic utilizing relationship between the input signal and output signal. This method utilized generally to investigate physical properties of system and the nondestructive test by ultrasonic signals. This method can be explained by linear system theory. In this paper the Continuous Wavelets Transform is utilized to search the relation between the linear system and continuous wavelets transform.

New decoupled wavelet bases for multiresolution structural analysis

  • Wang, Youming;Chen, Xuefeng;He, Yumin;He, Zhengjia
    • Structural Engineering and Mechanics
    • /
    • v.35 no.2
    • /
    • pp.175-190
    • /
    • 2010
  • One of the intractable problems in multiresolution structural analysis is the decoupling computation between scales, which can be realized by the operator-orthogonal wavelets based on the lifting scheme. The multiresolution finite element space is described and the formulation of multiresolution finite element models for structural problems is discussed. Various operator-orthogonal wavelets are constructed by the lifting scheme according to the operators of multiresolution finite element models. A dynamic multiresolution algorithm using operator-orthogonal wavelets is proposed to solve structural problems. Numerical examples demonstrate that the lifting scheme is a flexible and efficient tool to construct operator-orthogonal wavelets for multiresolution structural analysis with high convergence rate.

Sparse Point Representation Based on Interpolation Wavelets (보간 웨이블렛 기반의 Sparse Point Representation)

  • Park, Jun-Pyo;Lee, Do-Hyung;Maeng, Joo-Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.1 s.244
    • /
    • pp.8-15
    • /
    • 2006
  • A Sparse Point Representation(SPR) based on interpolation wavelets is presented. The SPR is implemented for the purpose of CFD data compression. Unlike conventional wavelet transformation, the SPR relieves computing workload in the similar fashion of lifting scheme that includes splitting and prediction procedures in sequence. However, SPR skips update procedure that is major part of lifting scheme. Data compression can be achieved by proper thresholding method. The advantage of the SPR method is that, by keeping even point physical values, low frequency filtering procedure is omitted and its related unphysical thresholing mechanism can be avoided in reconstruction process. Extra singular feature detection algorithm is implemented for preserving singular features such as shock and vortices. Several numerical tests show the adequacy of SPR for the CFD data. It is also shown that it can be easily extended to nonlinear adaptive wavelets for enhanced feature capturing.

Optimizing Wavelet in Noise Canceler by Deep Learning Based on DWT (DWT 기반 딥러닝 잡음소거기에서 웨이블릿 최적화)

  • Won-Seog Jeong;Haeng-Woo Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.113-118
    • /
    • 2024
  • In this paper, we propose an optimal wavelet in a system for canceling background noise of acoustic signals. This system performed Discrete Wavelet Transform(DWT) instead of the existing Short Time Fourier Transform(STFT) and then improved noise cancellation performance through a deep learning process. DWT functions as a multi-resolution band-pass filter and obtains transformation parameters by time-shifting the parent wavelet at each level and using several wavelets whose sizes are scaled. Here, the noise cancellation performance of several wavelets was tested to select the most suitable mother wavelet for analyzing the speech. In this study, to verify the performance of the noise cancellation system for various wavelets, a simulation program using Tensorflow and Keras libraries was created and simulation experiments were performed for the four most commonly used wavelets. As a result of the experiment, the case of using Haar or Daubechies wavelets showed the best noise cancellation performance, and the mean square error(MSE) was significantly improved compared to the case of using other wavelets.

AN APPROXIMATE SOLUTION OF AN INTEGRAL EQUATION BY WAVELETS

  • SHIM HONG TAE;PARK CHIN HONG
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.709-717
    • /
    • 2005
  • Integral equations occur naturally in many fields of mechanics and mathematical physics. We consider the Fredholm integral equation of the first kind.In this paper we are interested in integral equation of convolution type. We give approximate solution by Meyer wavelets

GIBBS PHENOMENON FOR WAVELETS IN HIGHER DIMENSION

  • SHIM HONG TAE;PARK CHIN HONG
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.759-769
    • /
    • 2005
  • We first discuss jump discontinuity in higher dimension, and then prove a local convergence theorem for wavelet approximations in higher dimension. We also redefine the concept of Gibbs phenomenon in higher dimension and show that wavelet expansion exhibits Gibbs phenomenon.

SOME POPULAR WAVELET DISTRIBUTION

  • Nadarajah, Saralees
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.2
    • /
    • pp.265-270
    • /
    • 2007
  • The modern approach for wavelets imposes a Bayesian prior model on the wavelet coefficients to capture the sparseness of the wavelet expansion. The idea is to build flexible probability models for the marginal posterior densities of the wavelet coefficients. In this note, we derive exact expressions for a popular model for the marginal posterior density.

A Note on Central Limit Theorem for Deconvolution Wavelet Density Estimators

  • Lee, Sungho
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.1
    • /
    • pp.241-248
    • /
    • 2002
  • The problem of wavelet density estimation based on Shannon's wavelets is studied when the sample observations are contaminated with random noise. In this paper we will discuss the asymptotic normality for deconvolving wavelet density estimator of the unknown density f(x) when courier transform of random noise has polynomial descent.

Selection of mother wavelet for bivariate wavelet analysis (이변량 웨이블릿 분석을 위한 모 웨이블릿 선정)

  • Lee, Jinwook;Lee, Hyunwook;Yoo, Chulsang
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.11
    • /
    • pp.905-916
    • /
    • 2019
  • This study explores the effect of mother wavelet in the bivariate wavelet analysis. A total of four mother wavelets (Bump, Mexican hat, Morlet, and Paul) which are frequently used in the related studies is selected. These mother wavelets are applied to several bivariate time series like white noise and sine curves with different periods, whose results are then compared and evaluated. Additionally, two real time series such as the arctic oscillation index (AOI) and the southern oscillation index (SOI) are analyzed to check if the results in the analysis of generated time series are consistent with those in the analysis of real time series. The results are summarized as follows. First, the Bump and Morlet mother wavelets are found to provide well-matched results with the theoretical predictions. On the other hand, the Mexican hat and Paul mother wavelets show rather short-periodic and long-periodic fluctuations, respectively. Second, the Mexican hat and Paul mother wavelets show rather high scale intervention, but rather small in the application of the Bump and Morlet mother wavelets. The so-called co-movement can be well detected in the application of Morlet and Paul mother wavelets. Especially, the Morlet mother wavelet clearly shows this characteristic. Based on these findings, it can be concluded that the Morlet mother wavelet can be a soft option in the bivariate wavelet analysis. Finally, the bivariate wavelet analysis of AOI and SOI data shows that their periodic components of about 2-4 years co-move regularly every about 20 years.