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Abstract. In this paper, we obtain that the space W2 of minimally supported fre-

quency wavelets, the supports of whose Fourier transforms consist of two intervals, is

path-connected.

1. Introduction

The study of topological notion of path-connectedness for the space of orthonor-
mal wavelets was initiated by Dai and Larson [1]. In [9], a similar study has been
made and it is obtained that the space WM of MRA wavelets is path-connected.
Latter, in [8], it has been proved that the space WF of MSF wavelets (s-elementary
wavelets) is path-connected. Further, path-connectedness of such spaces of wavelets
have been considered for higher dimensions as well [5, 6, 8].

In this paper, we consider the set W2 of one-dimensional MSF wavelets, the
supports of whose Fourier transforms consist of two intervals. These are known to
be MRA wavelets [3]. Thus W2 being a subset of WM derives induced topology
on it. It has been observed that the path joining the Shannon wavelet ψ0 and a
member ψ of W2 not equal to ψ0, described in [9], does not lie in W2. Thus, a
question of path-connectivity of W2 arises. We answer this question in affirmative.

2. Pre-Requisites

Let L1(R) be the collection of all Lebesgue integrable functions on R and L2(R)
be that of all Lebesgue square integrable functions on R. With the usual addition
and scalar multiplication of functions together with the inner-product ⟨f, g⟩ of f, g ∈
L2(R) defined by

⟨f, g⟩ =
∫
R
f(x)g(x) dx,
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L2(R) becomes a Hilbert space. The Fourier transform F is defined by

f̂(s) ≡ (Ff)(s) =

∫
R
f(t)e−ist dt,

where f ∈ L1(R) ∩ L2(R). This Fourier transform can be extended uniquely to an
operator on L2(R).

An orthonormal wavelet (or, a wavelet) in L2(R) is a function ψ ∈ L2(R) with
unit norm such that the family

{
2n/2ψ(2n · −l) : n, l ∈ Z

}
constitutes an orthonor-

mal basis for L2(R).
One of the methods of constructing orthonormal wavelets is based on the exis-

tence of a family of closed subspaces of L2(R) satisfying certain properties. Such a
family is called a multiresolution analysis or, simply an MRA.

Definition 2.1([7]). A sequence of closed subspaces (Vj)j∈Z of L2 (R), together
with a function φ ∈ V0 is called a multiresolution analysis if it satisfies the following
conditions:

(1) Vj ⊂ Vj+1 for all j ∈ Z,

(2) f ∈ Vj if and only if f (2 (·)) ∈ Vj+1 for all j ∈ Z,

(3)
∩
j∈Z Vj = {0} ,

(4)
∪
j∈Z Vj = L2 (R) ,

(5) {φ (· − k) : k ∈ Z} forms an orthonormal basis for V0.

The function φ is called a scaling function of the given MRA. An MRA gives
rise to a wavelet ψ which lies in the orthogonal complement of V0 in V1. A wavelet
arising from an MRA is called an MRA wavelet. A scaling function φ for an MRA
provides a 2π-periodic function m, known to be the low-pass filter associated with
φ which satisfies the following:

(i) φ̂(2ξ) = m(ξ)φ̂(ξ),

(ii) |m(ξ)|2 + |m(ξ + π)|2 = 1,

(iii) ψ̂(ξ) = eiξ/2m( ξ2 + π)φ̂( ξ2 ),

where the equalities above are all in the almost everywhere (a.e.) sense.

The following is a well-known characterization for a function φ ∈ L2(R) to be
a scaling function.

Theorem 2.1([4]). A function φ ∈ L2(R) is a scaling function for an MRA iff

(i)
∑
k∈Z |φ̂(ξ + 2kπ)|2 = 1, for a.e. ξ ∈ [−π, π),

(ii) limj→∞ |φ̂(2−jξ)| = 1, for a.e. ξ ∈ R,
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(iii) there exists a 2π-periodic function m ∈ L2([−π, π)) such that φ̂(2ξ) =
m(ξ)φ̂(ξ), for a.e. ξ ∈ R.

From the characterization for a function φ ∈ L2(R) to be a scaling function
stated as Theorem 2.1, it follows that if φ is a scaling function, then the function
φ̃ whose Fourier transform is |φ̂|, is also a scaling function.

Definition 2.2([9]). A measurable function ν is called a functional wavelet multi-

plier if the inverse Fourier transform of νψ̂ is a wavelet, whenever ψ is a wavelet.

The functional wavelet multipliers are characterized by the following theorem.

Theorem 2.2([9]). A measurable function ν is a functional wavelet multiplier iff
it is unimodular and ν(2t)/ν(t) is a.e. equal to a 2π-periodic function.

Notation ([9]).
(1) For an MRA wavelet ψ0, Sψ0 denotes the set{

ψ ∈ L2 (R) : ψ is an MRA wavelet and |φ̂0(ξ)| = |φ̂(ξ)|, a.e.
}
,

where φ0 and φ are scaling functions associated with ψ0 and ψ, respectively.
(2) For a wavelet ψ0, Mψ0 denotes the set{

ψ ∈ L2 (R) : ψ̂ = νψ̂0, where ν is a functional wavelet multiplier
}
.

Theorem 2.3([9]). If ψ0 is an MRA wavelet, then Sψ0 = Mψ0 .

The following result related with the path-connectivity of MRA wavelets can
be found in [9].

Theorem 2.4. The space WM of all MRA wavelets is path-connected.

The proof of the above result consists of two parts. In the first part, it is proved
that for a wavelet ψ, the class Mψ is path-connected. In the second part, the
Shannon wavelet ψ0 is considered. For an MRA wavelet ψ, on account of Theorem
2.1, an appropriate element ψ1 ∈ Sψ is selected in such a way that it is associated
with a scaling function φ1 for which φ̂1 ≥ 0. If m1 is the low-pass filter associated
with the scaling function φ1, then

ψ̂1(ξ) = eiξ/2m1

(
ξ

2
+ π

)
φ̂1

(
ξ

2

)
.

The Shannon wavelet ψ0 satisfies

ψ̂0(ξ) = eiξ/2m0

(
ξ

2
+ π

)
φ̂0(

ξ

2
),
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where φ̂0(ξ) = χ[−π,π)(ξ) and m0 is the low-pass filter associated with φ0. Indeed,
m0 on [−π, π) is given by

(2.1) m0(ξ) =
φ̂0(2ξ)

φ̂0(ξ)
=

{
1, if ξ ∈

[
−π

2 ,
π
2

)
,

0, if ξ ∈
[
−π,−π

2

)
∪
[
π
2 , π

)
.

For t ∈ [0, 1], a function mt on [−π, π) is defined as follows:
(2.2)

mt(ξ) =


(1− t)m0(ξ) + tm1(ξ), if ξ ∈

[
−π

2 ,
π
2

)
\
[
−(1− t)π2 , (1− t)π2

)
,

1, if ξ ∈
[
−(1− t)π2 , (1− t)π2

)
,√

1−m2
t (ξ + π), if ξ ∈

[
−π,−π

2

)
,√

1−m2
t (ξ − π), if ξ ∈

[
π
2 , π

)
.

Extension of mt to a 2π-periodic function on R yields a low-pass filter.
This family {mt : t ∈ [0, 1]} of filters connecting m0 to m1 is used to define scaling
functions {φt : t ∈ [0, 1]} from which the desired path-connectivity between ψ0 and
ψ1, and hence between ψ0 and ψ has been obtained.

3. Path-Connectedness of W2

In [4], it has been shown that if ψ ∈ L2(R) is a wavelet, then |supp(ψ̂)| ≥
2π. Wavelets, whose Fourier transforms have minimal support of measure 2π are
called Minimally Supported Frequency (MSF) Wavelets by Fang and Wang [2].
Independent of Fang and Wang, Dai and Larson [1], studied the same class of
wavelets and introduced the concept of wavelet sets.

A measurable set W ⊂ R is said to be a wavelet set if |ψ̂| = χW for some
wavelet ψ in L2(R). Such a wavelet ψ is called an s-elementary wavelet [1]. MSF
wavelets are indeed those wavelets which are associated with wavelet sets. One of
the earliest examples of wavelet sets is the Shannon or Littlewood-Paley wavelet set
[−2π,−π) ∪ [π, 2π).

Ha, Kang, Lee and Seo [3], characterized wavelet sets in R having two intervals
and proved that the wavelets arising from those two-interval wavelet sets are MRA
wavelets. Such wavelets are termed to be two-interval MSF wavelets. The collection
of all two-interval MSF wavelets will be denoted by W2. Wavelet sets with two
intervals are precisely

[2a− 4π, a− 2π] ∪ [a, 2a] ,

for some 0 < a < 2π, which we denote by W (a) ([3]). With no loss of generality we
may exclude the right end points of the intervals constituting these wavelet sets.

Observation. Consider the Shannon wavelet ψ0, where |ψ̂0| = χW (π) and a mem-

ber ψ1 in W2, for which |ψ̂1| = χW (π
2 ). The low-pass filter m0 for ψ0 is given by

(2.1), while that m1 for ψ1 is given by

m1(ξ) =

{
1, if ξ ∈

[
−3π

4 ,
π
4

)
,

0, if ξ ∈
[
−π,−3π

4

)
∪
[
π
4 , π

)
,
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extended 2π-periodically to R.
These wavelets are joined by a path σ : [0, 1] → WM such that the low-pass

filter mt of σ(t) ≡ ψt is determined by (2.2).

For t = 1
2 ,

m1/2(ξ) =


0, if ξ ∈

[
−π, −3π

4

)
,√

3
2 , if ξ ∈

[
− 3π

4 ,−
π
2

)
,

1, if ξ ∈
[
−π

2 ,
π
4

)
,

1
2 , if ξ ∈

[
π
4 ,

π
2

)
,

0, if ξ ∈
[
π
2 , π

)
.

The Fourier transform of the corresponding scaling function φ1/2 is given by

φ̂1/2(ξ) =
∞∏
j=1

m1/2(2
−jξ)

=


0, if ξ ∈

(
−∞, − 3π

2

)
,√

3
2 , if ξ ∈

[
−3π

2 ,−π
)
,

1, if ξ ∈
[
−π, π2

)
,

1
2 , if ξ ∈

[
π
2 , π

)
,

0, if ξ ∈ [π, ∞),

and the Fourier transform of the wavelet ψ1/2 is given by

ψ̂1/2(ξ) = e
iξ
2 m1/2

(
ξ

2
+ π

)
φ̂1/2

(
ξ

2

)

=



0, if ξ ∈ (−∞, −3π) ∪ [2π, ∞),√
3
2 e

iξ
2 , if ξ ∈ [−3π,−2π),

e
iξ
2 , if ξ ∈

[
−2π,−3π

2

)
,

1
2e

iξ
2 , if ξ ∈

[
− 3π

2 ,−π
)
,

0, if ξ ∈
[
−π, π2

)
,√

3
2 e

iξ
2 , if ξ ∈

[
π
2 , π

)
,

1
2e

iξ
2 , if ξ ∈ [π, 2π).

Clearly, the wavelet ψ1/2 does not lie in W2. Indeed, computation can be made to
check that no point of the path σ other than σ(0) and σ(1) lies in W2.

Now we prove that W2 is path-connected. The technique of the proof in-
volves adjustment of the intermediate filters which join the low-pass filter m0 of the
Shannon wavelet to the low-pass filter m1

a of a two-interval MSF wavelet ψ1
a with

supp(ψ̂1
a) = [2a− 4π, a− 2π) ∪ [a, 2a), keeping the path joining ψ0 and ψ1

a in W2.

Here it may be noticed that if ψ0 is a two-interval MSF wavelet and |ψ̂0| = χW (a),

where a ∈ (0, 2π), then for each member ψ of Mψ0 , |ψ̂| = χW (a).

Theorem 3.1. The space W2 is path-connected.
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Proof. Let ψ0 be the Shannon wavelet. Then the low-pass filter m0 for the Shannon
wavelet is given by (2.1).

Suppose ψa is a two-interval MSF wavelet given by

|ψ̂a(ξ)| = χW (a)(ξ),

where 0 < a < 2π. Then the modulus of the Fourier transform of the scaling
function φa comes out to be

|φ̂a(ξ)| = χ[a−2π, a)(ξ).

Choose ψ1
a ∈ Sψa = Mψa such that it is associated with the scaling function φ1

a,
whose Fourier transform is given by

φ̂1
a = |φ̂a| = χ[a−2π, a).

Clearly φ̂1
a ≥ 0. The low-pass filter m1

a associated with φ1
a on [a − 2π, a) is given

by

m1
a(ξ) =

φ̂1
a(2ξ)

φ̂1
a(ξ)

=

{
1, if ξ ∈

[
a−2π

2 , a2
)
,

0, if ξ ∈
[
a− 2π, a−2π

2

)
∪
[
a
2 , a

)
,

which is then extended 2π-periodically to R.
Also, we have

|ψ̂1
a(ξ)| = χW (a)(ξ).

Now, for each s ∈ [0, 1], we define the function ms
a on [−π+ (a− π)s, π+ (a− π)s)

as follows:

ms
a(ξ) =

 1, if ξ ∈
[
−π

2 + (a−π)s
2 , π2 + (a−π)s

2

)
,

0, if ξ ∈
[
−π + (a− π)s,−π

2 + (a−π)s
2

)
∪
[
π
2 + (a−π)s

2 , π + (a− π)s
)
,

and extend it 2π-periodically to the whole of R. For ξ ∈ R, we set

φ̂sa(ξ) =

∞∏
j=1

ms
a(2

−jξ).

Since 0 ≤ ms
a(ξ) ≤ 1, this product is well-defined. For

ξ ∈ [2j(π + (a− π)s), 2j+1(π + (a− π)s)), with j ≥ 0,

we have

t ≡ 2−(j+1)ξ ∈
[
π

2
+

(a− π)s

2
, π + (a− π)s

)
,

and hence ms
a(t) = 0. Thus

φ̂sa(ξ) = φ̂sa(2
j+1t) = ms

a(2
jt)φ̂sa(2

jt)
= ms

a(2
jt)ms

a(2
j−1t) · · ·ms

a(t)
∏∞
l=1m

s
a(2

−lt) = 0.
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Therefore, φ̂sa(ξ) = 0 for all ξ ∈ [π+(a−π)s,∞). Similarly, we can show that if ξ ∈
(−∞,−π+(a−π)s), then φ̂sa(ξ) = 0. Thus supp(φ̂sa) ⊆ [−π+(a−π)s, π+(a−π)s]. In
fact, φ̂sa = χ[−π+(a−π)s, π+(a−π)s). Now, we show that φsa is a scaling function for an
MRA. For this we use Theorem 2.1. By the definition of φ̂sa, it is clear that φ̂

s
a(2ξ) =

ms
a(ξ)φ̂

s
a(ξ) for all ξ ∈ R. Further, φ̂sa(ξ) = 1, when ξ ∈ [−π+(a−π)s, π+(a−π)s)

and 0 ≤ s ≤ 1. Therefore, φsa satisfies conditions (ii) and (iii). For condition (i),
let S = [−π+ (a− π)s, π+ (a− π)s). We easily see that the set {S − 2kπ : k ∈ Z}
partitions R, and therefore for a.e. ξ ∈ R, there exists exactly one k ∈ Z such that
ξ + 2kπ ∈ S. Thus condition (i) follows.

Using the relation

ψ̂sa(ξ) = eiξ/2ms
a

(
ξ

2
+ π

)
φ̂sa

(
ξ

2

)
,

we have

|ψ̂sa(ξ)| = χ[−2π+2(a−π)s,−π+(a−π)s)∪[π+(a−π)s, 2π+2(a−π)s)(ξ),

with 0 < π + (a− π)s < 2π.
Thus ψsa is a two-interval MSF wavelet. The proof of the continuity of the map

s 7→ ψsa is drawn on almost the similar lines as that of s 7→ ψs described in [9], by
observing the following:

(i) For a fixed s ∈ [0, 1] the set of points ξ ∈ R, for which the map t 7→ mt
a(2

−jξ),
j ≥ 1 is not continuous at s, is countable.

(ii) For 0 < a ≤ π, φ̂ta(ξ) = φ̂1
a(ξ) on [−a, a), for all t ∈ [0, 1].

(iii) For π ≤ a < 2π, φ̂ta(ξ) = φ̂1
a(ξ) on [−(2π − a), (2π − a)), for all t ∈ [0, 1].

Thus, we have a path γa : [0, 1] → W2 defined by γa(s) = ψsa, joining ψ0 ≡ ψ0
a to

ψ1
a, and hence with ψa as each Mψa is path-connected. 2
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