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ABSTRACT. In this paper, we obtain that the space W2 of minimally supported fre-
quency wavelets, the supports of whose Fourier transforms consist of two intervals, is
path-connected.

1. Introduction

The study of topological notion of path-connectedness for the space of orthonor-
mal wavelets was initiated by Dai and Larson [1]. In [9], a similar study has been
made and it is obtained that the space WM of MRA wavelets is path-connected.
Latter, in [8], it has been proved that the space W of MSF wavelets (s-elementary
wavelets) is path-connected. Further, path-connectedness of such spaces of wavelets
have been considered for higher dimensions as well [5, 6, 8].

In this paper, we consider the set Wy of one-dimensional MSF wavelets, the
supports of whose Fourier transforms consist of two intervals. These are known to
be MRA wavelets [3]. Thus W, being a subset of WM derives induced topology
on it. It has been observed that the path joining the Shannon wavelet iy and a
member ¥ of Wa not equal to vy, described in [9], does not lie in 'Wy. Thus, a
question of path-connectivity of Wy arises. We answer this question in affirmative.

2. Pre-Requisites

Let LY(R) be the collection of all Lebesgue integrable functions on R and L?(R)
be that of all Lebesgue square integrable functions on R. With the usual addition

and scalar multiplication of functions together with the inner-product (f, g) of f,g €
L?(R) defined by

(f.9) = / f(2)g(a) da,
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L?(R) becomes a Hilbert space. The Fourier transform J is defined by

f(s) = (TF)(s) = / F(tye~t dt,

where f € L'(R) N L*(R). This Fourier transform can be extended uniquely to an
operator on L?(R).

An orthonormal wavelet (or, a wavelet) in L?(R) is a function v € L*(R) with
unit norm such that the family {2"/2w(2" =) :nle Z} constitutes an orthonor-
mal basis for L?(R).

One of the methods of constructing orthonormal wavelets is based on the exis-
tence of a family of closed subspaces of L?(R) satisfying certain properties. Such a
family is called a multiresolution analysis or, simply an MRA.

Definition 2.1([7]). A sequence of closed subspaces (V;);ez of L? (R), together
with a function ¢ € Vj is called a multiresolution analysis if it satisfies the following
conditions:

(1) V; CVjyq forall j € Z,
(2) feV;ifandonlyif f(2(:)) € Vjy41 for all j € Z,

(3) Njez V5 =10},

@) Ujez Vi = L* (R),

(5) {¢(-— k) : k € Z} forms an orthonormal basis for V}.

The function ¢ is called a scaling function of the given MRA. An MRA gives
rise to a wavelet ¢ which lies in the orthogonal complement of V) in V;. A wavelet
arising from an MRA is called an MRA wavelet. A scaling function ¢ for an MRA
provides a 2m-periodic function m, known to be the low-pass filter associated with
o which satisfies the following:

(1) $(26) =m(E)e(8),
(it) [m(&)I* + m(§ +m)]* =1,
(iii) (€) = &'/ *m(§ +m)$(5),
where the equalities above are all in the almost everywhere (a.e.) sense.

The following is a well-known characterization for a function ¢ € L?(R) to be
a scaling function.

Theorem 2.1([4]). A function ¢ € L*(R) is a scaling function for an MRA iff
(1) ZkEZ |¢(£ + 2]€7T)|2 = ]‘7 fO’]“ a.e. 5 € [_7-(7 77)7
(ii) limj_e0 |G(277€)| = 1, for a.e. € € R,
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(iii) there exists a 2m-periodic function m € L*([—m,m)) such that $(2¢) =
m(€)p(€), for a.e. £ €R.

From the characterization for a function ¢ € L?(R) to be a scaling function
stated as Theorem 2.1, it follows that if ¢ is a scaling function, then the function
@ whose Fourier transform is ||, is also a scaling function.

Definition 2.2([9]). A measurable function v is called a functional wavelet multi-
plier if the inverse Fourier transform of v1) is a wavelet, whenever 9 is a wavelet.

The functional wavelet multipliers are characterized by the following theorem.

Theorem 2.2([9]). A measurable function v is a functional wavelet multiplier iff
it is unimodular and v(2t)/v(t) is a.e. equal to a 2m-periodic function.

Notation ([9]).
(1) For an MRA wavelet v, Sy, denotes the set

{¢ € L*(R) : ¢ is an MRA wavelet and |¢o(£)| = |p(€)], ae.},

where ¢g and ¢ are scaling functions associated with vy and 1, respectively.
(2) For a wavelet 1o, My, denotes the set

{1/) eL? (R) : 1& = m&o, where v is a functional wavelet multiplier} .

Theorem 2.3([9]). If ¥ is an MRA wavelet, then Sy, = My, .

The following result related with the path-connectivity of MRA wavelets can
be found in [9].

Theorem 2.4. The space WM of all MRA wavelets is path-connected.

The proof of the above result consists of two parts. In the first part, it is proved
that for a wavelet 1, the class M, is path-connected. In the second part, the
Shannon wavelet 1 is considered. For an MRA wavelet 1, on account of Theorem
2.1, an appropriate element 11 € Sy, is selected in such a way that it is associated
with a scaling function ¢ for which ¢; > 0. If my is the low-pass filter associated
with the scaling function 7, then
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where $o(§) = X[—n,x)(§) and myg is the low-pass filter associated with ¢g. Indeed,
mg on [—m, ) is given by

. @0(25) _ ]-7 lfg € _E7 E)a
®1) ol =@ { 0. ifée[-m—5)U[E.m).
For ¢ € [0,1], a function m; on [—m,7) is defined as follows:
(2.2)
(1—=t)mo(&) +tmy(§), fce -5, 3)\[-1-1)F, 1-1)F),
me(€) = 1, ifee|-(1-0%, (1-t)%),
RS 1—m2(&+7), if ¢ € [-m,—-F),
1—m2(¢ —m), if £ € [g,ﬂ').

Extension of m; to a 2m-periodic function on R yields a low-pass filter.
This family {m: : t € [0,1]} of filters connecting mg to my is used to define scaling
functions {¢; : t € [0,1]} from which the desired path-connectivity between )y and
11, and hence between ¢y and ¢ has been obtained.

3. Path-Connectedness of W,

In [4], it has been shown that if ¥ € L?(R) is a wavelet, then |supp()| >
2m. Wavelets, whose Fourier transforms have minimal support of measure 27 are
called Minimally Supported Frequency (MSF) Wavelets by Fang and Wang [2].
Independent of Fang and Wang, Dai and Larson [1], studied the same class of
wavelets and introduced the concept of wavelet sets.

A measurable set W C R is said to be a wavelet set if [{)| = xy for some
wavelet ¢ in L?(R). Such a wavelet 1 is called an s-elementary wavelet [1]. MSF
wavelets are indeed those wavelets which are associated with wavelet sets. One of
the earliest examples of wavelet sets is the Shannon or Littlewood-Paley wavelet set
[—27, —7) U [m, 27).

Ha, Kang, Lee and Seo [3], characterized wavelet sets in R having two intervals
and proved that the wavelets arising from those two-interval wavelet sets are MRA
wavelets. Such wavelets are termed to be two-interval MSF wavelets. The collection
of all two-interval MSF wavelets will be denoted by Ws. Wavelet sets with two
intervals are precisely

[2a — 47, a — 27| U [a, 2q] ,

for some 0 < a < 27, which we denote by W (a) ([3]). With no loss of generality we
may exclude the right end points of the intervals constituting these wavelet sets.

Observation. Consider the Shannon wavelet 1y, where |1&0| = Xw(x) and a mem-
ber ¢ in Wy, for which |¢);| = Xw(z)- The low-pass filter mq for 1 is given by

us
2

(2.1), while that my for ¢, is given by

1, ifee - T,
m1(§)—{ 0, ifée —%—%f)U[%”)’



Path-Connectivity of Two-Interval MSF Wavelets 297

extended 2m-periodically to R.

These wavelets are joined by a path o : [0, 1] — WM guch that the low-pass
filter my of o(t) = 9y is determined by (2.2).

For t = %7

o
S5
i
=R
NI
m m
Ran
g A
|
m\:!'“w
T

ml/z(f) =

O[\:)\)—A\’l—k
e e
R
Mmoo
m m

EFNER|

s 1f€6 5,71').

The Fourier transform of the corresponding scaling function ¢y is given by

@1/2 H m1/2 35

0, if¢e ( 0, 73—”),

?, if € e —%T,—ﬂ')
= 1a lff € |- 772‘- )

%7 if ¢ e gﬂr),

0, if £ € [, 00),

and the Fourier transform of the wavelet ¢, 5 is given by

1&1/2(5) = €%m1/2 (g + 7T> D172 (g)

0, if £ € (—o0, —37) U [27, o),
?6%7 if £ € [-3m, 27r)
e%, if £ € [ 2, — )
= %e%, if € e —37“,—%),
0, if £ € |—m, g),
Ped, ifee[gm),
%e%, if £ € [, 2m).

Clearly, the wavelet 11 /5 does not lie in Wy. Indeed, computation can be made to
check that no point of the path ¢ other than ¢(0) and o(1) lies in Wa.

Now we prove that Wy is path-connected. The technique of the proof in-
volves adjustment of the intermediate filters which join the low-pass filter mg of the
Shannon wavelet to the low-pass filter m?! of a two-interval MSF wavelet ¢! with
supp(1h}) = [2a — 4, a — 27) U [a, 2a), keeping the path joining 1y and ¢ in Ws.
Here it may be noticed that if 1y is a two-interval MSF wavelet and |1/;0\ = XW(a)

where a € (0,27), then for each member ¢ of My,, [¢)| = XW (a)-

Theorem 3.1. The space W5 is path-connected.



298 Divya Singh

Proof. Let 1y be the Shannon wavelet. Then the low-pass filter mq for the Shannon
wavelet is given by (2.1).
Suppose 9, is a two-interval MSF wavelet given by

[$a(€)] = Xw (@) (€),

where 0 < a < 27m. Then the modulus of the Fourier transform of the scaling
function ¢, comes out to be

|¢a(€)‘ = Xla—27,a) (f)

Choose 1} € Sy, = My, such that it is associated with the scaling function ¢},
whose Fourier transform is given by

@zlz = |¢a| = Xla—27,a)-

1
a

Clearly ¢ > 0. The low-pass filter m! associated with ¢! on [a — 27, a) is given
by
A1 .
Loy _ Pa(2) _ [ 1, ifEe€
"= o e

which is then extended 27-periodically to R.
Also, we have

2 )

a— 2, af”) u [9 a),

WL (E)] = xw(a)(&)-

Now, for each s € [0, 1], we define the function m? on [—7 + (a — 7)s, 7 + (a — 7)s)
as follows:

(6 1, if¢e —g+@,g+%),
ma (&) = _ _
0, if¢e —w+(a—w)s,—%+%)u[%—F%m—i—(a—w)s),

and extend it 2w-periodically to the whole of R. For £ € R, we set
e .
2.6 = [[ma27e).
j=1

Since 0 < m$(€) < 1, this product is well-defined. For
£€2(n+ (a—m)s), 27 (1 + (a —7)s)), with j >0,

we have
(a—m)s

t = 9—(+1) T
£¢ 2 + 2

, T + (CL - ’/T)'S> )
and hence mg(t) = 0. Thus
$:(8) = P3(2F1) = m (21) 45 (271)
=my(Zt)my (277 1) - m (1) TTZ, m3 (27') = 0.
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Therefore, ¢5(£) = 0 for all £ € [7+ (a —7)s, 00). Similarly, we can show that if £ €
(=00, —m+(a—m)s), then $2(€) = 0. Thus supp(¢?) C [-7+(a—7)s, 7+(a—m)s]. In
fact, 95 = X|—r+(a—m)s, n+(a—m)s)- NOW, we show that ¢ is a scaling function for an
MRA. For this we use Theorem 2.1. By the definition of ¢, it is clear that ¢2(2¢) =
mi(€)gs (&) for all £ € R. Further, ¢5(£) =1, when € € [-7+ (a—m)s, 7+ (a—7)s)
and 0 < s < 1. Therefore, ¢? satisfies conditions (ii) and (iii). For condition (i),
let S=[-m+(a—m)s, 7+ (a —m)s). We easily see that the set {S —2km : k € Z}
partitions R, and therefore for a.e. £ € R, there exists exactly one k € Z such that
&+ 2km € S. Thus condition (i) follows.

Using the relation
78 i 6 ~S 6
1/}a(§) =e {/ng <2 +m Pa 5 )

we have

|¢2 (5)' = X[—274+2(a—7)s, —m4+(a—7)s)U[r+(a—n)s, 2r+2(a—7)s) (5)7

with 0 < 7+ (¢ — m)s < 2m.

Thus ) is a two-interval MSF wavelet. The proof of the continuity of the map
s — 1% is drawn on almost the similar lines as that of s — ¢, described in [9], by
observing the following:

(i) For afixed s € [0, 1] the set of points ¢ € R, for which the map ¢ +— m! (277¢),
7 > 1 is not continuous at s, is countable.
(i) For 0 <a <, ¢ (&) = pL(€) on [—a,a), for all t € [0,1].
(iii) For m < a < 2m, ¢L(£) = ¢L(€) on [~ (27 — a), (27 — a)), for all t € [0, 1].

Thus, we have a path ~, : [0,1] — Wy defined by v,(s) = 92, joining ¥y = ¥? to
+, and hence with 1), as each My, is path-connected. O
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