• Title/Summary/Keyword: W-N 박막

Search Result 364, Processing Time 0.035 seconds

유도 결합 플라즈마 스퍼터 승화법을 이용한 CrN 박막의 반응성 증착에서 질소 분압에 따른 박막 특성

  • Yu, Yeong-Gun;Choe, Ji-Seong;Ju, Jeong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.566-566
    • /
    • 2013
  • 종래의 흑연 위주 연료전지 분리판에서 최근 고분자 전해질 막 연료전지가 높은 전력, 낮은 작동 온도로 자동차 산업에서 상당한 주목을 받고 있다. 분리판의 기술적 요구사항은 높은 전기 전도도, 높은 내식성, 가스 밀봉성, 경량성, 가공성, 저비용 등이다. 후보 물질로는 전기 전도성을 갖는 질화물계가 고려되고 있다. 기판으로는 스테인레스강이 가장 유력하며 Fe에 첨가된 Ni, Cr이 존재하므로 Cr 또는 CrN를 박막의 형태로 전자빔 증발법, 마그네트론 스퍼터링법으로 고속 증착하려는 시도가 있었다. 본 연구에서는, 스테인리스 강박(0.1 mm 이하)에 보호막으로 CrN을 선택하고 고속, 고품질증착을 위해서 새로운 방법인 스퍼터 승화법을 개발하였다. 박막의 품질을 개선할 수 있는 고밀도 유도 결합 플라즈마 영역 내에 Cr 소스를 직류 바이어스 함으로써 가열 및 스퍼터링이 일어나도록 하였다. 5 mTorr의 Ar 유도 결합 플라즈마를 2.4 MHz, 500 W로 유지하면서 직류 바이어스 전력을 30 W (900 V, 0.02 A) 인가하고, $N_2$의 유량을 0.5, 1.0, 1.5 SCCM로 변화를 주어 반응성 증착 공정의 결과로 얻어지는 CrN 박막의 특성을 분석하였다. N2의 유량이 증가할수록 $Cr_2N$이 감소하고, CrN이 증가하는 것을 확인하였다. 또한 부식성과 접촉저항을 측정하였다. 부식 전위는 N20 SCCM 보다 모두 상승하는 것을 확인하였고, $N_21$ SCCM에서 부식 전류 밀도가 2.097E-6 (at 0.6V) $A/cm^2$로 나타났다. 접촉저항 에서는 시료 당 3군데(top, center, bottom)를 측정하였다. 전기전도도 측면에서 가장 좋은 결과는 $N_21$ SCCM 일 때 $28.8m{\Omega}{\cdot}cm^2$의 접촉저항을 갖는 경우였다. 미국 에너지성의 기준은 부식 전류밀도 1.E-6 $A/cm^2$이하, 접촉 저항 $0.02{\Omega}m^2$이므로 매우 근접한 결과를 보이고 있다.

  • PDF

Magnetic Properties of RF Diode Sputtered FeN Multilayer Films (RF Diode 스퍼터 방법으로 증착된 FeN 다층 박막의 자기적 특성)

  • 최연봉;박세익;조순철
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.1
    • /
    • pp.42-47
    • /
    • 1995
  • FeN thin films for inductive recording heads were sputter deposited using RF diode sputtering mehtod from a pure iron target onto 7059 glass substrates, and their magnetic properties were measured. The magnetic properties were greatly affected by film thickness, gas pressure, sputter power and flow ratio of $N_{2}$ to Ar. Single layer FeN films with their thickness varied from $1,000\;{\AA}$ to $6,000\;{\AA}$ were doposited. 800 W sputter power, 3 mT gas pressure, $N_{2}$ to Ar flow ratio of 6.6 : 100 were the sputtering conditions. Up to 7 layers of FeN films having total thickness of $6,000\;{\AA}$ were deposited using $SiO_{2}$ of $30\;{\AA}$ thickness as intermediate layers and their coercivity and saturation magnetization were measured. The sputtering conditions were the same as those in the single layer films. Easy axis coercivity of the single layer FeN films gradually decreased as their thickness was increased, but for the films with their thicknesses above $3,000\;{\AA}$, the coercivity changed very little. As the number of the FeN layers were increased, the coercivity decreased We estimated the grain size of FeN films from the FWHM (Full Width at Half Maximum) of X-ray diffraction peaks. The grain size steadily decreased from about $200\;{\AA}$ to $120\;{\AA}$ as the number of layers were increased. Minimum hard axis coercivity of 0.4 Oe was obtained when the number of layers was four. Maximum relative permeability was 2,900 when the number of layers was three. The cut off frequeocy of the multilayer films were above 100 MHz.

  • PDF

Characteristics of Electomigration & Surface Hardness about Tungsten-Carbon-Nitrogen(W-C-N) Related Diffusion Barrier (W-C-N 확산방지막의 전자거동(ElectroMigration) 특성과 표면 강도(Surface Hardness) 특성 연구)

  • Kim, Soo-In;Hwang, Young-Joo;Ham, Dong-Shik;Nho, Jae-Kue;Lee, Jae-Yun;Park, Jun;Ahn, Chan-Goen;Kim, Chang-Seong;Oh, Chan-Woo;Yoo, Kyeng-Hwan;Lee, Chang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.3
    • /
    • pp.203-207
    • /
    • 2009
  • Copper is known as a replacement for aluminum wire which is used for semiconductor. Because specific resistance of Cu ($1.67{\mu}{\Omega}$-cm) is lower than that of Al ($2.66{\mu}{\Omega}$-cm), Cu reduce RC delay time. Although melting point of Cu($1085^{\circ}C$) is higher than melting point of Al, Cu have characteristic to easily react with Silicon(Si) in low temperature, and it isn't good at adhesive strength with Si. For above these reason, research of diffusion barrier to prevent reaction between Cu and Si and to raise adhesive strength is steadily advanced. Our study group have researched on W-C-N (tungsten-carbon-nitrogen) Diffusion barrier for preventing diffusion of Cu through semiconductor. By recent studies, It's reported that W-C-N diffusion barrier can even precent Cu and Si diffusing effectively at high temperature. In this treatise, we vaporized different proportion of N into diffusion barrier to research Cu's Electromigration based on the results and studied surface hardness in the heat process using nano scale indentation system. We gain that diffusion barrier containing nitrogen is more stable for Cu's electromigration and has stronger surface hardness in heat treatment process.

A Study on the Photo-Conductive Characteristics of (p)ZnTe/(n)Si Solar Cell and (n)CdS-(p)ZnTe/(n)Si Poly-Junction Thin Film ((p)ZnTe/(n)Si 태양전지와 (n)CdS-(p)ZnTe/(n)Si 복접합 박막의 광도전 특성에 관한 연구)

  • Jhoun, Choon-Saing;Kim, Wan-Tae;Huh, Chang-Su
    • Solar Energy
    • /
    • v.11 no.3
    • /
    • pp.74-83
    • /
    • 1991
  • In this study, the (p)ZnTe/(n)Si solar cell and (n)CdS-(p)ZnTe/(n)Si poly-junction thin film are fabricated by vaccum deposition method at the substrate temperature of $200{\pm}1^{\circ}C$ and then their electrical properties are investigated and compared each other. The test results from the (p)ZnTe/(n)Si solar cell the (n)CdS-(p)ZnTe/(n)Si poly-junction thin fiim under the irradiation of solar energy $100[mW/cm^2]$ are as follows; Short circuit current$[mA/cm^2]$ (p)ZnTe/(n)Si:28 (n)CdS-(p)ZnTe/(n)Si:6.5 Open circuit voltage[mV] (p)ZnTe/(n)Si:450 (n)CdS-(p)ZnTe/(n)Si:250 Fill factor (p)ZnTe/(n)Si:0.65 (n)CdS-(p)ZnTe/(n)Si:0.27 Efficiency[%] (p)ZnTe/(n)Si:8.19 (n)CdS-(p)ZnTe/(n)Si:2.3 The thin film characteristics can be improved by annealing. But the (p)ZnTe/(n)Si solar cell are deteriorated at temperatures above $470^{\circ}C$ for annealing time longer than 15[min] and the (n)CdS-(p)ZnTe/(n)Si thin film are deteriorated at temperature about $580^{\circ}C$ for longer than 15[min]. It is found that the sheet resistance decreases with the increase of annealing temperature.

  • PDF

[ $NH_3$ ] Pulse Plasma Treatment for Atomic Layer Deposition of W-N Diffusion Barrier (암모니아 펄스 플라즈마를 이용한 원자층 증착된 질화텅스텐 확산방지막 특성)

  • Lee, Chang-Woo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.4 s.33
    • /
    • pp.29-35
    • /
    • 2004
  • We have deposited the W-N diffusion barrier on Si substrate with $NH_3$ pulse plasma enhanced atomic layer deposition (PPALD) method by using $WF_6$ and $NH_3$ gases. The $WF_6$ gas reacts with Si that the surface corrosion occurs severely, but the $NH_3$ gas incorporated with pulse plasma and $WF_6$ gas are easily deposited W-N thin film without Si surface corrosion. Because the $NH_3$ with pulse plasma can be active species dissociated and chemisorbed on Si. Thus the Si surface are covered and saturated with nitrogen, which are able to deposit the W-N thin film. We also examine the deposition mechanism and the effect of $NH_3$ pulse plasma treatment.

  • PDF

Fabrication of MgO(100)/$Si_3N_4/SiO_2/Si_3N_4$/Si Substrate for Pyroelectric IR Sensor (초전형 적외선 센서를 위한 MgO(100)/$Si_3N_4/SiO_2/Si_3N_4$/Si 기판 제작)

  • Kim, Sung-Woo;Sung, Se-Kyoung;Ryu, Jee-Youl;Choi, Woo-Chang;Choi, Hyek-Hwan;Lee, Myoung-Kyo;Kwon, Tae-Ha
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.90-95
    • /
    • 2000
  • The substrate for pyroelectric IR sensor which has orientation similar to MgO single crystal was fabricated by depositing the MgO thin film on $Si_3N_4/SiO_2/Si_3N_4$/Si. The MgO thin film was deposited by RF magnetron sputtering. The c-axis orientation of PLT thin film deposited on Pt/MgO(100)/$Si_3N_4/SiO_2/Si_3N_4$/Si substrate was investigated. The MgO thin film deposited at $500^{\circ}C$ at a gas pressure of 30 mTorr with RF power of 160 W exhibited a good a-axis orientation. The PLT thin films deposited on these substrates also exhibited c-axis orientation similar to the PLT thin films deposited on MgO single crystal substrate.

  • PDF

Analysis of Lattice constants change for study of W-C-N Diffusion (W-C-N 확산방지막의 격자상수 변화 분석을 통한 특성 연구)

  • Kim, Soo-In;Lee, Chang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.2
    • /
    • pp.109-112
    • /
    • 2008
  • The miniaturization of device size and submicron process causes serious problems in conventional metallization due to the solubility of silicon and metal at the interface, such as an increasing contact resistance in the contact hole and interdiffusion between metal and silicon. Moreover, the interaction between Cu and Si is so strong and detrimental to the electrical performance of Si even at temperatures below $200^{\circ}C$. Therefore it is necessary to implement a barrier layer between Cu and Si. So we study W-C-N diffusion barrier for prevent Cu diffusion as a function of $N_2$ gas flow and thermal stability. Especially, we also study the W-C-N diffusion barrier for analyzing the change of lattice constants.

A Study of Thin Film deposition using of RF Magnetron Sputtering (RF 마그네트론 스퍼터링을 이용한 박막 증착에 관한 연구)

  • Lee, Woo Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.6
    • /
    • pp.772-777
    • /
    • 2018
  • This paper used RF Magnetron Sputtering to deposition n-type and p-type to ITO glass. The N-type ohmic contact worked well under all conditions. Sheet resistance has been shown to increase sheet resistance as RF Power increases. After analyzing the surface of the deposited thin film, in the condition that RF Power was 250W and substrate temperature was $250^{\circ}C$, particles were measured to have a uniform and consistent thin film. P-type has good ohmic contact under all conditions and sheet resistance has been shown to increase as RF Power increases. As the RF Power grew, thickness increased and stabilized. PN junction thin film and NP junction thin film showed increased thickness and stabilized as sputtering time increased. As a result of thin film, conversion efficiency was at 0.2 when sputtering time was 10 minutes.