• Title/Summary/Keyword: W-N 박막

Search Result 364, Processing Time 0.022 seconds

The Deposition and Characterization of 10 nm Thick Teflon-like Anti-stiction Films for the Hot Embossing (핫 엠보싱용 점착방지막으로 사용되는 10nm급 두께의 Teflon-like 박막의 형성 및 특성평가)

  • Cha Nam-Goo;Kim In-Kwon;Park Chang-Hwa;Lim Hyung-Woo;Park Jin-Goo
    • Korean Journal of Materials Research
    • /
    • v.15 no.3
    • /
    • pp.149-154
    • /
    • 2005
  • Teflon like fluorocarbon thin films have been deposited on silicon and oxide molds as an antistiction layer for the hot embossing process by an inductively coupled plasma (ICP) chemical vapor deposition (CVD) method. The process was performed at $C_4F_8$ gas flow rate of 2 sccm and 30 W of plasma power as a function of substrate temperature. The thickness of film was measured by a spectroscopic ellipsometry. These films were left in a vacuum oven of 100, 200 and $300^{\circ}C$ for a week. The change of film thickness, contact angle and adhesion and friction force was measured before and after the thermal test. No degradation of film was observed when films were treated at $100^{\circ}C$. The heat treatment of films at 200 and $300^{\circ}C$ caused the reduction of contact angles and film thickness in both silicon and oxide samples. Higher adhesion and friction forces of films were also measured on films treated at higher temperatures than $100^{\circ}C$. No differences on film properties were found when films were deposited on either silicon or oxide. A 100 nm silicon template with 1 to $500\;{\mu}m$ patterns was used for the hot embossing process on $4.5\;{\mu}m$ thick PMMA spun coated silicon wafers. The antistiction layer of 10 nm was deposited on the silicon mold. No stiction or damages were found on PMMA surfaces even after 30 times of hot embossing at $200^{\circ}C$ and 10 kN.

Mixed-state Hall effect of $MgB_2$ thin films ($MgB_2$박막의 혼합상태에서의 홀 효과)

  • Kim, Bo-Yeon;Jung, Soon-Gil;Moon, Kyeong-Hee;Kang, W.N.;Choi, Eun-Mi;Kim, Heon-Jung;Lee, Sung-Ik;Kim, Hyeong-Jin
    • Progress in Superconductivity
    • /
    • v.7 no.2
    • /
    • pp.103-108
    • /
    • 2006
  • We have measured the Hall resistivity (${\rho}_{xy}$) and the longitudinal resistivity (${\rho}_{xy}$) on superconducting $MgB_2$ thin films in extended fields up to 18 T. We found a universal scaling behavior between the Hall resistivity and the longitudinal resistivity, which is independent of the temperature and the magnetic field. At a wide magnetic field region from 1 to 18T, a universal power law of ${\beta}=2.0{\pm}0.1$ in a scaling relation, ${\rho}_{xy}={A{\rho}_{xx}}^{\beta}$, was observed in c-axis-oriented $MgB_2$ thin films. These results can be well interpreted by using recent models.

  • PDF

Domination of glassy and fluctuation behavior over thermal activation in vortex state in $MgB_2$ thin film ($MgB_2$ 박막에서의 열적 활성화에 비해 두드러진 볼텍스 유리화 및 열적 요동현상의 연구)

  • Kim, Heon-Jung;W. N. Kang;Kim, Hyeong-Jin;Park, Eun-Mi;Kim, Kijoon H. P.
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.23-27
    • /
    • 2001
  • We have investigated the mixed-state magnetoresistance of high quality c-axis-oriented MgB2 thin film for magnetic field from 0.5 T to 5.0 T, applied normal to ab-plane. The temperature dependence of magnetoresistance was well described by vortex glass and fluctuation theories for different temperature regimes. We observed glassy exponent of v(z-1)~3 and upper critical field of $H_{c2}$(0)~35 T, which is consistent with previous data obtained from direct $H_{c2}$(0) measurements. Interestingly, the thermally activated flux flow region was observed to be very narrow, suggesting that the pinning strength of this compound is very strong. This finding is closely related to the recent reports that the bulk pinning is dominant in $MgB_2$and the critical current density of $MgB_2$ thin film is very high, comparable to that of cuprate superconductor. The present results further suggest that $MgB_2$is beneficial to technical applications.ons.

  • PDF

Thermoelectric Properties of Bi2Te3 Films Grown by Modified MOCVD with Substrate Temperatures (개조된 MOCVD법으로 성장한 Bi2Te3 박막의 기판온도에 따른 열전 특성)

  • You, Hyun-Woo;Kwon, O-Jong;Kim, Kwang-Chon;Choi, Won-Chel;Park, Chan;Kim, Jin-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.4
    • /
    • pp.340-344
    • /
    • 2011
  • Thermoelectric bismuth telluride ($Bi_2Te_3$) films were deposited on $4^{\circ}$ off oriented (001) GaAs substrates using a modified metal organic chemical vapor deposition (MOCVD) system. The effects of substrate temperature on surface morphologies, crystallinity, electrical properties and thermoelctric properties were investigated. Two dimensional growth mode (2D) was observed at substrate temperature lower than $400^{\circ}C$. However, three dimensional growth mode (3D) was observed at substrate temperature higher than $400^{\circ}C$. Change of growth mechanism from 2D to 3D was confirmed with environmental scanning electron microscope (E-SEM) and X-ray diffraction analysis. Seebeck coefficients of all samples have negative values. This result indicates that $Bi_2Te_3$ films grown by modified MOCVD are n-type. The maximum value of Seebeck coefficient was -225 ${\mu}V/K$ and the power factor was $1.86{\times}10^{-3}\;W/mK^2$ at the substrate temperature of $400^{\circ}C$. $Bi_2Te_3$ films deposited using modified MOCVD can be used to fabricate high-performance thermoelectric devices.

Effect of Moisture in a Vacuum Chamber on the Deposition of c-BN Thin Film using an Unbalanced Magnetron Sputtering Method (비대칭 마그네트론 스퍼터링 방법에 의한 질화붕소막의 증착시 반응실내의 초기 수분이 입방정질화붕소 박막의 형성에 미치는 영향)

  • Lee, Eun-Sook;Park, Jong-Keuk;Lee, Wook-Seong;Seong, Tae-Yeon;Baik, Young-Joon
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.620-624
    • /
    • 2012
  • The role of moisture remaining inside the deposition chamber during the formation of the cubic boron nitride (c-BN) phase in BN film was investigated. BN films were deposited by an unbalanced magnetron sputtering (UBM) method. Single-crystal (001) Si wafers were used as substrates. A hexagonal boron nitride (h-BN) target was used as a sputter target which was connected to a 13.56 MHz radiofrequency electric power source at 400 W. The substrate was biased at -60 V using a 200 kHz high-frequency power supply. The deposition pressure was 0.27 Pa with a flow of Ar 18 sccm - $N_2$ 2 sccm mixed gas. The inside of the deposition chamber was maintained at a moisture level of 65% during the initial stage. The effects of the evacuation time, duration time of heating the substrate holder at $250^{\circ}C$ as well as the plasma treatment on the inside chamber wall on the formation of c-BN were studied. The effects of heating as well as the plasma treatment very effectively eliminated the moisture adsorbed on the chamber wall. A pre-deposition condition for the stable and repeatable deposition of c-BN is suggested.

Characteristics of ZnO thin films by RF magnetron sputtering for FBAR application (RF 마그네트론 스퍼터링을 이용한 FBAR 소자용 ZnO 박막의 특성)

  • Kim, S.Y.;Lee, N.H.;Kim, S.G.;Park, S.H.;Jung, M.G.;Shin, Y.H.;Ji, S.H.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1523-1525
    • /
    • 2003
  • Due to the rapid development of wireless networking system, researches on the communication devices are mainly focus on microwave frequency devices such as filters, resonators, and phase shifters. Among them, Film bulk acoustic resonator (FBAR) has been paid extensive attentions for their high performance. In this research, ZnO thin films were deposited by RF-magnetron sputtering on Al/$SiO_2$/Si wafer and then crystalline properties and surface morphology were examined. To measure crystalline structure and surface morphology X-ray diffraction (XRD) and Scanning Electron Microscope (SEM) were employed. It was showed that crystalline properties of ZnO thin films were strongly dependant on the deposition conditions. As increasing the deposition temperature and the deposition pressures, the peak intensities of ZnO(002) plane were increased until $300^{\circ}C$, then decreased rapidly. At the sputtering conditions of RF power of 213 W and working pressure of 15 m Torr, ZnO film had excellent c-axis orientation, surface morphology, and adhesion to the substrate. In conclusion we optimized smooth surface with very small grains as well as highly c-axis oriented ZnO film for FBAR applications.

  • PDF

The effect of composition ratio on the surface morphology and superconducting properties of SmBCO films prepared by thermal co-evaporation method (동시 열증발법으로 제조한 SmBCO 고온 초전도에서 박막 조성비가 표면형상 및 초전도 특성에 미치는 영향)

  • Lee, N.J.;Kim, H.S.;Ha, H.S.;Ko, R.K.;Song, K.J.;Ha, D.W.;Yang, J.S.;Kim, T.H.;Jeong, Y.H.;Youm, D.J.;Moon, S.H.;Park, C.;Oh, S.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.1
    • /
    • pp.5-8
    • /
    • 2007
  • We have investigated the superconducting properties and surface morphology of $Sm_xBa_yCu_3O_{6+z}$ thin films deposited on LMO/IBAD-MgO/Hastelloy which prepared with different composition ratio by co-evaporation method(EDDC, Evaporation using Drum in Dual Chambers). We observed the composition ratio of SmBCO thin films by EDS analysis. We fabricated SmBCO thin film with critical current density of $1.5{\times}10^6A/cm^2$ at composition ratio of SM:Ba:Cu=1.10:2.01:3(at 77 K self-field). And, we confirmed that substitution of Sm-Ba did not occur at Cu rich phase by EDS analysis.

백색 LED증착용 MOCVD 유도가열 장치에서 가스 inlet위치에 따른 기판의 온도 균일도 측정

  • Hong, Gwang-Gi;Yang, Won-Gyun;Ju, Jeong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.115-115
    • /
    • 2010
  • 고휘도 고효율 백색 LED (lighting emitting diode)가 차세대 조명광원으로 급부상하고 있다. 백색 LED를 생산하기 위한 공정에서 MOCVD (유기금속화학증착)장비를 이용한 에피웨이퍼공정은 에피층과 기판의 격자상수 차이와 열팽창계수차이로 인하여 생성되는 에피결함의 문제로 기판과 GaN 박막층 사이에 완충작용을 해줄 수 있는 버퍼층 (Buffer layer)을 만든다. 그 위에 InGaN/GaN MQW (Multi Quantum Well)공정을 하여 고휘도 고효율 백색 LED를 구현 할 수 있다. 이 공정에서 기판의 온도가 불균일해지면 wafer 파장 균일도가 나빠지므로 백색 LED의 yield가 떨어진다. 균일한 기판 온도를 갖기 위한 조건으로 기판과 induction heater의 간격, 가스의 흐름, 기판의 회전, 유도가열코일의 디자인 등이 장비의 설계 요소이다. 본 연구에서는 유도가열방식의 유도가열히터를 이용하여 기판과 히터의 간격에 차이에 따른 기판 균일도 측정했고, 회전에 의한 기판의 온도분포와 자기장분포의 실험적 결과를 상용화 유체역학 코드인 CFD-ACE+의 모델링 결과와 비교 했다. 또한 가스의 inlet위치에 따른 기판의 온도 균일도를 측정하였다. 본 연구에서 사용된 가열원은 유도가열히터 (Viewtong, VT-180C2)를 사용했고, 가열된 흑연판 표면의 온도를 2차원적으로 평가하기 위하여 적외선 열화상 카메라 (Fluke, Ti-10)를 이용하여 온도를 측정했다. 와전류에 의한 흑연판의 가열 현상을 누출 전계의 분포로 확인하기 위하여 Tektronix사의 A6302 probe와 TM502A amplifier를 사용했다. 흑연판 위에 1 cm2 간격으로 211곳에서 유도 전류를 측정했다. 유도전류는 벡터양이므로 $E{\theta}$를 측정했으며, 이때의 측정 방향은 흑연판의 원주방향이다. 또한 자기장에 의한 유도전류의 분포를 확인하기 위하여 KANETEC사의 TM-501을 이용하여 흑연판 중심으로부터 10 mm 간격으로 자기장을 측정 했다. 저항 가열 히터를 통하여 대류에 의한 온도 균일도를 평가한 결과 gap이 3 mm일때, 평균 온도 $166.5^{\circ}C$에서 불균일도 6.5%를 얻었으며, 회전에 의한 온도 균일도 측정 결과는 2.5 RPM일 때 평균온도 $163^{\circ}C$에서 5.5%의 불균일도를 확인했다. 또한 CFD-ACE+를 이용한 모델링 결과 자기장의 분포는 중심이 높은 분포를 나타냄을 확인했고, 기판의 온도분포는 중심으로부터 55 mm되는 곳에서 300 W/m3로 가장 높은 분포를 나타냈다. 가스 inlet 위치를 흑연판 중심으로 수직, 수평 방향으로 흘려주었을 때의 불균일도는 각각 10.5%, 8.0%로 수평 방향으로 가스를 흘려주었을 때 2.5% 온도 균일도 향상을 확인했다.

  • PDF

A Study of the Photoluminescence of ZnO Thin Films Deposited by Radical Beam Assisted Molecular Beam Epitaxy (라디칼 빔 보조 분자선 증착법 (Radical Beam Assisted Molecular Beam Epitaxy) 법에 의해 성장된 ZnO 박막의 발광 특성에 관한 연구)

  • Suh, Hyo-Won;Byun, Dong-jin;Choi, Won-Kook
    • Korean Journal of Materials Research
    • /
    • v.13 no.6
    • /
    • pp.347-351
    • /
    • 2003
  • II-Ⅵ ZnO compound semiconductor thin films were grown on $\alpha$-Al$_2$O$_3$(0001) single crystal substrate by radical beam assisted molecular beam epitaxy and the optical properties were investigated. Zn(6N) was evaporated using Knudsen cell and O radical was assisted at the partial pressure of 1$\times$10$^{4}$ Torr and radical beam source of 250-450 W RF power. In $\theta$-2$\theta$ x-ray diffraction analysis, ZnO thin film with 500 nm thickness showed only ZnO(0002)and ZnO(0004) peaks is believed to be well grown along c-axis orientation. Photoluminescence (PL) measurement using He-Cd ($\lambda$=325 nm) laser is obtained in the temperature range of 9 K-300 K. At 9 K and 300 K, only near band edge (NBE) is observed and the FWHM's of PL peak of the ZnO deposited at 450 RF power are 45 meV and 145 meV respectively. From no observation of any weak deep level peak even at room temperature PL, the ZnO grains are regarded to contain very low defect density and impurity to cause the deep-level defects. The peak position of free exciton showed slightly red-shift as temperature was increased, and from this result the binding energy of free exciton can be experimentally determined as much as $58\pm$0.5 meV, which is very closed to that of ZnO bulk. By van der Pauw 4-point probe measurement, the grown ZnO is proved to be n-type with the electron concentration($n_{e}$ ) $1.69$\times$10^{18}$$cm^3$, mobility($\mu$) $-12.3\textrm{cm}^2$/Vㆍs, and resistivity($\rho$) 0.30 $\Omega$$\cdot$cm.

Characteristics of Constructed SPR (Surface Plasmon Resonance) Sensor System for the Detection of Salmonella and hIgG Antigen-Antibody Reaction. (살모넬라와 면역글로블린(hIgG)의 항원-항체반응 감지를 위한 표면 플라즈몬 공명형 센서시스템의 특성)

  • Um, N.S.;Koh, K.N.;Hahm, S.H.;Kim, J.H.;Lee, S.H.;Kang, S.W.
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.263-270
    • /
    • 1998
  • Surface Plasmon Resonance (SPR) sensor system, has rapid response and high sensitivity, can be applicable for detecting reaction times of many biospecific interactions. A SPR sensor system was constructed to detect the antigen-antibody reactions of salmonella and hIgG (human immunoglobulin G). Sensor chips made of gold thin film were used for detecting biological bindings of antigen and antibody reactions. The antigen and antibody reactions for salmonella and hIgG were carried out with various time intervals to observed characteristics of these reactions using SPR sensor system. The resonance angle shift changes were clearly observed at the time of salmonella or hIgG antibody injection into sample cell since each antibody was self-assembled on gold chip surface of the sensor. It was found that the antibodies of salmonella and hIgG reacted with its sensor chip surface in 10 minutes and 60 minutes respectively. And the antigens of both salmonella and hIgG were bound to its antibody within 1 minute.

  • PDF