• 제목/요약/키워드: W-Cu composite

검색결과 83건 처리시간 0.028초

Nanoscale Longitudinal Normal Strain Behavior of ${Si_3}{N_4}$-to-ANSI 304L Brazed Joints under Pure Bending Condition

  • Seo, D.W.;Lim, J.K.
    • International Journal of Korean Welding Society
    • /
    • 제4권1호
    • /
    • pp.46-52
    • /
    • 2004
  • To combine the mechanical advantages of ceramics with those of metals, one often uses both materials within one composite component. But, as known, they have different material properties and fracture behaviors. In this study, a four-point bending test is carried out on $Si_3N_4$ joined to ANSI 304L stainless steel with a Ti-Ag-Cu filler and a Cu interlayer at room temperature to evaluate their longitudinal strain behaviors. And, to detect localized strain, a couple of strain gages are pasted near the joint interfaces of the ceramic and metal sides. The normal strain rates are varied from $3.33{\times}10^5$ to $3.33{\times}10^{-1}s^{-1}$ Within this range, the experimental results showed that the four-point bending strength and the deflection of the interlayer increased with increasing the strain rate.

  • PDF

Bi/CNT 화합물과 Resin/CNT를 보강한 YBCO 초전도체의 기계적, 자기적 특성 변화 (Mechanical and Magnetic Properties of YBCO Superconductor with Bi/CNT Composite and Resin/CNT Impregnation)

  • 오원석;장건익;한영희;성태현
    • Progress in Superconductivity
    • /
    • 제9권1호
    • /
    • pp.107-110
    • /
    • 2007
  • Bi/CNT composite and resin/CNT were chosen to improve the mechanical properties of $YBa_2Cu_3O_7$(YBCO) superconductor. In order to elucidate the effects of Bi/CNT composite and resin/CNT in YBCO superconductors, melt texture superconductor were impregnated by mixed compound of Bi and CNT into the artificial holes parallel to the c-axis, which were drilled on the YBCO superconductor. Various amount of Bi/CNT and resin/CNT were impregnated to YBCO superconductor with different holes diameters. Typical artificial holes diameters were 0.5, 0.7, and 1.0 mm respectively. Result of three-point bending test measurement, the bending strength with resin/CNT impregnation was improved up to 59.64 MPa as compared with 50.79 MPa of resin/CNT free bulk. Resin/CNT impregnation has been found to be one of the effective ways in improving the mechanical properties of bulk superconductor.

  • PDF

Zr계 비정질 복상 합금의 과냉 액상 영역에서의 유동 음력과 변형거동 (Flow Stress and Deformation Behavior of Zr-based Bulk Metallic Glass Composite in Supercooled Liquid Region)

  • 전현준;이광석;장영원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.417-420
    • /
    • 2006
  • The composition and structure of dendrite phase within $Zr_{76.11}Ti_{4.20}Cu_{4.51}Ni_{3.16}Be_{1.49}Nb_{10.53}$ bulk metallic glass (BMG) were confirmed by using an EPMA, XRD and TEM, respectively. The chief elements of dendrite phase were Zr-Ti-Nb and had a BCC structure. The thermal properties of this BMG have been then subsequently investigated by using a differential scanning calorimeter (DSC). The glass transition and crystallization onset temperatures were determined as $339.7^{\circ}C$ and $375.8^{\circ}C$ for this alloy, respectively. Mechanical properties have also been examined by conducting a series of uniaxial compression tests at various temperatures within supercooled liquid region under the strain rates between $10^{-4}/s$ and $3{\times}10^{-2}/s$. The deformation behavior of BMG composite within supercooled liquid region is similar to one of Vit-1 exhibiting amorphous single phase alloy. The flow stresses of BMG composite, however, are entirely higher than those of Vit-1 because dendrite phases are interfere with moving of atoms.

  • PDF

Cathode Materials LaNi1−xCuxO3 for Low Temperature Solid Oxide Fuel Cells

  • Sun, Juncai;Wang, Chengli;Li, Song;Ji, Shijun
    • 한국세라믹학회지
    • /
    • 제45권12호
    • /
    • pp.755-759
    • /
    • 2008
  • New cathode materials $LaNi_{1-x}{Cu_x}{O_3}$ (typically $LaNi_{0.8}Cu_{0.2}O_3$) were synthesized using a co-precipitation method. The structure and morphology of the powders were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The composite material [$Ce_{0.8}Sm_{0.2}O_{2-\ddot{a}}$(SDC) and carbonate (${Na_2}{CO_3},{Li_2}{CO_3}$)], NiO and $LaNi_{1-x}{Cu_x}{O_3}$ were used as the electrolyte, anode and cathode, respectively. The electrochemical performance of La-Ni-Cu-O perovskite oxide at low temperatures ($400{\sim}550^{\circ}C$) was studied. The results showed that $LaNi_{0.8}Cu_{0.2}O_3$ precursor powder prepared through a co-precipitation method and calcined at $860^{\circ}C$ for 2 h formed uniform grains with diameters in the range of $400{\sim}500\;nm$. The maximum power density and the short circuit current density of the single cell unit at $550^{\circ}C$ were found to be $390\;mW/cm^2$ and $968\;mA/cm^2$, respectively.

다이아몬드 배열 무전해 니켈 도금층/무산소동 기판의 열전도도 특성 (Thermal Properties of Diamond Aligned Electroless Ni Plating Layer/Oxygen Free Cu Substrates)

  • 정다운;김송이;박경태;서석준;김택수;김범성
    • 한국분말재료학회지
    • /
    • 제22권2호
    • /
    • pp.134-137
    • /
    • 2015
  • The monolayer engineering diamond particles are aligned on the oxygen free Cu plates with electroless Ni plating layer. The mean diamond particle sizes of 15, 23 and $50{\mu}m$ are used as thermal conductivity pathway for fabricating metal/carbon multi-layer composite material systems. Interconnected void structure of irregular shaped diamond particles allow dense electroless Ni plating layer on Cu plate and fixing them with 37-43% Ni thickness of their mean diameter. The thermal conductivity decrease with increasing measurement temperature up to $150^{\circ}C$ in all diamond size conditions. When the diamond particle size is increased from $15{\mu}m$ to $50{\mu}m$ (Max. 304 W/mK at room temperature) tended to increase thermal conductivity, because the volume fraction of diamond is increased inside plating layer.

초전도 송전 케이블용 도체의 안정성 및 기계적특성에 대한 이론적 검토 (Theoretical study on the stability and mechanical property of conductor for superconducting power cable)

  • 오상수;오봉환;하동우;조전욱;권영길;류강식;남궁도;장종근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 A
    • /
    • pp.147-149
    • /
    • 1995
  • The stabilization of the conductor in superconducting power cable is very important from the view point of protection. In this study, critical thicknesses of superconducting layer of $Nb_{3}Sn$ conductor and stabilizer Cu have been estimated under the adiabatic condition. The bending stress of $Nb_{3}Sn$/SUS composite superconducting tape on the curvature radius was also evaluated.

  • PDF

Bi-2212/Cu-Ni 튜브로 제작한 초전도 한류소자의 단락사고시험 결과 (Fabrication and Fault Test Results of Bi-2212/Cu-Ni Tubes for Superconducting Fault Current Limiting Elements)

  • 오성용;임성우;유승덕;김혜림;현옥배
    • Progress in Superconductivity
    • /
    • 제10권1호
    • /
    • pp.45-49
    • /
    • 2008
  • For the development of superconducting fault current limiters (SFCLs), fault current limiting elements were fabricated out of Bi-2212 bulk tubes and tested. The SFCL elements consisted of tube shaped Bi-2212 bulks and metal shunts for the stabilizers. Firstly, the Bi-2212 bulk tubes were processed based on a design of monofilar coils in order to acquire large resistance and high voltage rating. 300 mm-long Bi-2212 tubes were designed to have the current path of 410 cm in length with 24 turns and 41 mm in diameter. The processed monofilar coil, as designed, had 300 A $I_c$ at 77 K. The fabricated superconducting monofilar coils were affixed to Cu-Ni alloy as that of stabilizers. The Cu-Ni alloys were processed to have the same shape of the superconducting monofilar coils. The Cu-Ni coil had resistivity of 32 ${\mu}{\Omega}$-cm at 77 K and 37 ${\mu}{\Omega}$-cm at 300 K. The metal shunts were attached to the outside of the Bi-2212 monofilar coil by a soldering technique. After the terminals made of copper were attached to both ends of the superconductor-metal shunt composite, the gap between the turns and the surface of the elements was filled with an epoxy and a dense mesh made of FRP in order to enhance the mechanical strength. The completed SFCL elements went through fault tests, and we confirmed that the voltage rating of 143 $V_{rms}$ (E =0.35 $V_{rms}$/cm) could be accomplished.

  • PDF

Carbon-Nanofiber Reinforced Cu Composites Prepared by Powder Metallurgy

  • Weidmueller, H.;Weissgaerber, T.;Hutsch, T.;Huenert, R.;Schmitt, T.;Mauthner, K.;Schulz-Harder, S.
    • 한국분말재료학회지
    • /
    • 제13권5호
    • /
    • pp.321-326
    • /
    • 2006
  • Electronic packaging involves interconnecting, powering, protecting, and cooling of semiconductor circuits fur the use in a variety of microelectronic applications. For microelectronic circuits, the main type of failure is thermal fatigue, owing to the different thermal expansion coefficients of semiconductor chips and packaging materials. Therefore, the search for matched coefficients of thermal expansion (CTE) of packaging materials in combination with a high thermal conductivity is the main task for developments of heat sink materials electronics, and good mechanical properties are also required. The aim of this work is to develop copper matrix composites reinforced with carbon nanofibers. The advantages of carbon nanofibers, especially the good thermal conductivity, are utlized to obtain a composite material having a thermal conductivity higher than 400 W/mK. The main challenge is to obtain a homogeneous dispersion of carbon nanofibers in copper. In this paper, a technology for obtaining a homogeneous mixture of copper and nanofibers will be presented and the microstructure and properties of consolidated samples will be discussed. In order to improve the bonding strength between copper and nanofibers, different alloying elements were added. The microstructure and the properties will be presented and the influence of interface modification will be discussed.

크라비욘 원사가 함유된 면타올의 오배자 염색 (Gallnut dyeing of Crabyon Fiber Contained Cotton Towels)

  • 우지혜;이신희
    • 한국의류산업학회지
    • /
    • 제17권6호
    • /
    • pp.1030-1038
    • /
    • 2015
  • The purpose of this study is to investigate the dyeability of crabyon fiber contained cotton towels after dyeing with gallut. In this study, the colorants of gallnut were extracted with boiling water at 60℃ and 60min. Crabyon, composite fiber of Chitin/Chitosan and cellulose, is manufactured by uniformly blending Chitin/Chitosan and cellulose viscose and extruding the blended viscose into spin-bath. Cotton towels with crabyon fiber dyed with extracted solution from gallnut according to concentration, temperature and time. Crabyon fiber contained cotton towels dyed using gallnut were pre of post-mordanted using Al, Cu, and Fe. The dyeability(K/S) and color characteristics(L*, a*, b*, C, and h(color angle)) of dyed crabyon fiber contained cotton towels were measured by computer color matching machine and photographs. The crabyon fiber composition of cotton towels was conformed by amide peak(-CONH-) of chitin or chitosan of FT-IR spectroscopy. The results obtained were as follows; The amide peak of crabyon fiber contained cotton towels appeared at about 1652 cm−1. The dyeability of crabyon fiber contained cotton towel was increased gradually with increasing concentration of gallnut dyeing solution and saturated at about 150%(o.w.f). The optimum dyeing temperature and dyeing time were 90~100℃ and 80minutes expectively. The crabyon fiber contained cotton towels were dyed reddish yellow by non, Al, and Cu mordanting, reddish blue by Fe mordanting, respectively. The fastness to washing according to concentration of gallnut in and mordanting method indicated good grade result as more than 3~4 degree in all conditions.

PZT계 압전 세라믹 파이버 어레이 복합체를 이용한 미소 풍력 에너지 하베스터 (Small-Scale Wind Energy Harvester Using PZT Based Piezoelectric Ceramic Fiber Composite Array)

  • 이민선;나용현;박진우;정영훈
    • 한국전기전자재료학회논문지
    • /
    • 제32권5호
    • /
    • pp.418-425
    • /
    • 2019
  • A piezoelectric ceramic fiber composite (PCFC) was successfully fabricated using $0.69Pb(Zr_{0.47}Ti_{0.53})O_3-0.31[Pb(Zn_{0.4}Ni_{0.6})_{1/3}Nb_{2/3}]O_3$ (PZT-PZNN) for use in small-scale wind energy harvesters. The PCFC was formed using an epoxy matrix material and an array of Ag/Pd-coated PZT-PZNN piezo-ceramic fibers sandwiched by Cu interdigitated electrode patterned polyethylene terephthalate film. The energy harvesting performance was evaluated in a custom-made wind tunnel while varying the wind speed and resistive load with two types of flutter wind energy harvesters. One had a five-PCFC array vertically clamped with a supporting acrylic rod while the other used the same structure but with a five-PCFC cantilever array. Stainless steel (thickness: $50{\mu}m$) was attached onto one side of the PCFC to form the PZT-PZNN cantilever. The output power, in general, increased with an increase in the wind speed from 2 m/s to 10 m/s for both energy harvesters. The highest output power of $15.1{\mu}W$ at $14k{\Omega}$ was obtained at a wind speed of 10 m/s for the flutter wind energy harvester with the PZT-PZNN cantilever array. The results presented here reveal the strong potential for wind energy harvester applications to supply sustainable power to various IoT micro-devices.