• Title/Summary/Keyword: W-C-W thin film

Search Result 601, Processing Time 0.033 seconds

Influence of Substrate Temperature of SCT Thin Film by RF Sputtering Method (RF 스퍼터링법에 의한 SCT 박막의 기판온도 영향)

  • Oh, Y.C.;Kim, J.S.;Cho, C.N.;Shin, C.G.;Song, M.J.;So, B.M.;Choi, W.S.;Kim, C.H.;Lee, J.U.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.718-721
    • /
    • 2004
  • The $(Sr_{0.9}Ca_{0.1})TiO_3$(SCT) thin films are deposited on Pt-coated electrode$(Pt/TiN/SiO_2/Si)$ using RF sputtering method at various substrate temperature. The optimum conditions of RF power and $Ar/O_2$ ratio were 140[W] and 80/20, respectively. Deposition rate of SCT thin films was about $18.75[{\AA}/min]$. The crystallinity of SCT thin films were increased with increase of substrate temperature in the temperature range of $100\sim500[^{\circ}C]$. The dielectric constant of SCT thin films were increased with the increase of substrate temperature, and changed almost linearly in temperature ranges of $-80\sim+190[^{\circ}C]$. The current-voltage characteristics of SCT thin films showed the increasing leakage current as the substrate temperature increases.

  • PDF

The Structure, Optical and Electrical Characteristics of AZO Thin Film Deposited on PET Substrate by RF Magnetron Sputtering Method (PET 기판 위에 RF magnetron sputtering으로 증착한 AZO 박막의 구조적, 광학적, 전기적 특성)

  • Lee, Yun seung;Kim, Hong bae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.4
    • /
    • pp.36-40
    • /
    • 2016
  • The 2 wt.% Al-doped ZnO(AZO) thin films were fabricated on PET substrates with various RF power 20, 35, 50, 65, and 80W by using RF magnetron sputtering in order to investigate the structure, electrical and optical properties of AZO thin films in this study. The XRD measurements showed that AZO films exhibit c-axis orientation. At a RF power of 80W, the AZO films showed the highest (002) diffraction peak with a FWHM of 0.42. At a RF power of 65W, the lowest electrical resistivity was about $1.64{\times}[10]$ ^(-4) ${\Omega}-cm$ and the average transmittance of all films including substrates was over 80% in visible range. Good transparence and conducting properties were obtained due to RF power control. The obtained results indicate that it is acceptable for applications as transparent conductive electrodes.

Transparent Conductive Oxide(TCO) thin film(AZO) prepared for display application (디스플레이용 투명전도막(AZO)의 제작)

  • Kim, H.W.;Keum, M.J.;Son, I.H.;Sin, S.K.;Ka, C.H.;Kim, K.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.165-168
    • /
    • 2004
  • In this study, AZO(ZnO:Al) thin film were prepared by FTS(Facing Target Sputtering) system. The electrical, optical and crystallographic properties of AZO thin film with $O_2$ gas flow ratio have been investigated. The thickness, transmittance, crystal structure and resistivity of AZO thin film were measured by a-step, UV-VIS spectrometer, XRD and four-point probe, respectively. As a result AZO thin film deposited with the transmittance over 80% and the resistivity about $10^{-1}\Omega-cm$.

  • PDF

Characteristics of PLT thin films by rf magnetron sputtering (고주파 마그네트론 스펏터링법으로 제조한 PLT 박막의 특성)

  • Choi, B.J.;Park, J.H.;Kim, Y.J.;Choi, S.Y.;Kim, K.W.
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.37-42
    • /
    • 1995
  • The PLT thin films on MgO substrate have been fabricated by RF magnetron sputtering and the dependence of properties on fabrication conditions have been studied. The PbO-rich target was used and the optimum fabrication conditions of the PLT thin films were such that substrate temperature, working pressure, $Ar/O_{2}$ ratio, and rf power was $640^{\circ}C$, 10 mTorr, 10:1, and $1.7\;W/cm^{2}$, repectively. In these conditions, the PLT thin film showed the deposition rate of $62.5\;{\AA}/min$, the Pb/Ti ratio of 1/2, and the dielectric constant of 200. The PLT thin film showed good c-axis orientation and crystalinity according to XRD and SEM analysis.

  • PDF

Study of optimum growth condition of phase change Ge-Sb-Te thin films as an optical recording medium using in situ ellipsometry (In situ 타원법을 사용한 광기록매체용 Ge-Sb-Te 박막의 최적성장조건 연구)

  • Kim, Sang-Youl;Li, Xue-Zhe
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.1
    • /
    • pp.23-32
    • /
    • 2003
  • The spectroe-ellipsometric constant $\Delta$, Ψ and the ellipsometric growth curves at the wavelength of 632.8 nm are collected. These are critically examined to find out the optimum growth condition of phase change $Ge_2Sb_2Te_5(GST)$ thin films as an optical recording medium. GST films are prepared using DC magnetron sputtering technique, under the selected experimental conditions of Ar gas pressure (5 mTorr, 7 mTorr and 10 mTorr), DC power of sputtering gun (15 W, 30 W and 45 W), and substrate temperature (from room temperature to 18$0^{\circ}C$). Based on the three film model, the density distribution of deposited GST films are obtained versus Ar gas pressure and DC power by analyzing spectro-ellipsometric data. The calculated evolution curves at the wavelength of 632.8 nm, are fit into the in situ observed ones to get information about the evolution of density distribution during film growth. The density distribution showed different evolution curves depending on deposition conditions. The GST films fabricated at DC power of 30 W or 45 W, and at Ar gas pressure of 7 mTorr turned out to be the most homogeneous one out of those prepared at room temperature, even though the maximum density difference between the dense region and the dilute region of the GST film was still significant (~50%). Finally, in order to find the optimum growth condition of homogeneous GST thin films, the substrate temperature is varied while Ar gas pressure is fixed at 7 mTorr and DC power at 30 W and 45 W respectively. A monotonic decrease of void fraction except for a slight increase at 18$0^{\circ}C$ is observed as the substrate temperature increases. Decrease of void fraction indicates an increase of film density and hence an improvement of film homogeneity. The optimum condition of the most homogeneous GST film growth turned out to be 7 mTorr of Ar gas pressure, 15$0^{\circ}C$ of substrate temperature. and 45 W of DC power. The microscopic images obtained using scanning electron microscope, of the samples prepared at the optimum growth condition, confirmed this conclusion. It is believed that the fabrication of homogeneous GST films will be quite beneficial to provide a reliable optical recording medium compatible with repeated write/erase cycles.

Effects of RF Power on Physical and Electrical Characteristics of TiC Thin Films Deposited by Magnetron Sputtering (마그네트론 스퍼터링법으로 증착시킨 TiC 박막의 물리적, 전기적 특성에서 RF 파워의 영향)

  • Kim, Nam-Hoon;Park, Yong Seob
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.7
    • /
    • pp.458-461
    • /
    • 2014
  • TiC thin films were deposited on Si wafer by unbalanced magnetron sputtering (UBMS) system with two targets of graphite and titanium. During the TiC sputtering, the RF power was varied from 100 W to 175 W and the physical and electrical properties of TiC films were investigated. The hardness and rms surface roughness of TiC films were improved with increasing RF power and the maximum hardness about 24 GPa and the minimum rms surface roughness about 1.2 nm were obtained. The resistivity of TiC films was decreased with increasing RF power. Consequently, the physical and electrical properties of TiC film wewe improved with increasing RF power.

Characteristics variation of CoCrTa/Si double layer thin film on variation of underlayer substrate temperature (하지층기판온도에 따른 CoCrTa/Si 이층박막의 특성변화)

  • Park, W.H.;Kim, Y.J.;Keum, M.J.;Ka, C.H.;Son, I.H.;Choi, H.W.;Kim, K.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.77-80
    • /
    • 2001
  • Crystallographic and magnetic characteristics of CoCr-based magnetic thin film for perpendicular magnetic recording media were influenced on preparing conditions. In these, there is that substrate temperature was parameter that increases perpendicular coercivity of CoCrTa magnetic layer using recording layer. While preparation of CoCr-based doublelayer, by optimizing substrate temperature, we expect to increase perpendicular anisotropy of CoCr magnetic layer and prepare ferromagnetic recording layer with a good quality by epitaxial growth. CoCrTa/Si doublelayer showed a good dispersion angle of c-axis orientation $\Delta\theta_{50}$ caused by inserting amorphous Si underlayer which prepared at underlayer substrate temperature 250C. Perpendicular coercivity was constant, in-plane coercivity was controlled a low value about 200Oe. This result implied that Si underlayer could restrain growth of initial layer of CoCrTa thin film, which showed bad magnetic properties effectively without participating magnetization patterns of magnetic layer. In case of CoCrTa/Si that prepared with ultra thin underlayer, crystalline orientation of CoCrTa was improved rather underlayer thickness 1nm, it was expected that amorphous Si layer played a important role in not only underlayer but also seed layer.

  • PDF

A Study on the Characteristics of μc-Si:H Films Prepared by Multistep Deposition Method using SiH4/H2 Gas Mixture (SiH4/H2 혼합기체를 Multistep 방식으로 증착한 수소화된 실리콘 박막의 특성 연구)

  • Kim, Taehwan;Kim, Dong-Hyun;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.2
    • /
    • pp.250-256
    • /
    • 2014
  • In this study, we deposited and investigated ${\mu}c$-Si:H thin films prepared by Plasma Enhanced Chemical Vapor Deposition(PECVD) system. To deposition silicon thin films, we controlled $SiH_4$ gas concentration, RF input power, and heater temperature. According to the experiments, the more $SiH_4$ gas concentration increased, deposition rate also increased but crystalline property decreased at the same conditions. In the RF input power case, deposition rate and crystalline property increased together when the input power increased from 100[W] to 300[W]. If RF input power was 300[W], deposition rate has reached saturation point. In the heater temperature, deposition rate increased when heater temperature increased. Crystalline property maintained a certain level until heater temperature was $250[^{\circ}C]$. And then it was a suddenly increased. Multistep method has been proposed to improve the quality of ${\mu}c$-Si:H thin film. $SiH_4$ gas was injected with a time interval. According to the experiments, crystallite ratio improve about 20~60[%] and photo conductivity increased up to six times.

A Study on the Evaluation of Power Performance according to Temperature Characteristics of Amorphous Transparent Thin-Film (비정질 박막 투과형 태양전지모듈의 온도특성에 따른 발전성능 평가 연구)

  • An, Young-Sub;Song, Jong-hwa;Lee, Sung-jin;Yoon, Jong-ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.45-48
    • /
    • 2009
  • This study evaluated the influence of temperature on the PV module surface on power output characteristics, especially for an amorphous transparent thin-film PV module which was applied to a full-scale mock-up model as building integrated photovoltaic system. The tested mock-up consisted of various slopes of PV module, facing to the south. The annual average temperature of the module installed with the slope of $30^{\circ}$ revealed $43.1^{\circ}C$, resulting in $7^{\circ}C$ higher than that measured in PV modules with the slope of $0^{\circ}$and $90^{\circ}$ did. This $30^{\circ}$ inclined PV module also showed the highest power output of 28.5W (measured at 2 PM) than other two modules having the power output of 20.4W and 14.9W in the same time for $0^{\circ}$ and $90^{\circ}$ in the slope, respectively. In case of the $30^{\circ}$ inclined PV module, it exhibited very uniform distribution of power output generation even under the higher temperature on the module surface. Consequently, the surface temperature of the PV module analyzed in this study resulted in 0.22% reduction in power output in every $1^{\circ}C$ increase of the module surface temperature.

  • PDF