• Title/Summary/Keyword: W/O(Water in Oil)

Search Result 202, Processing Time 0.026 seconds

Development of the Novel Cosmetics Impregnation Material and Study on Makeup W/O Emulsions using It (새로운 화장료 함침재의 개발과 이를 활용한 메이크업 유중수형 에멀전에 관한 연구)

  • Kang, Sungsoo;Kim, Hyeon Jeong;Oh, Se Woong;Park, Sang Wook;Kim, Kyung Seob
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.1
    • /
    • pp.27-33
    • /
    • 2017
  • Up to now, better convenience and portability were important factors in the development of the cosmetics and achieved by immersing low viscosity makeup water-in-oil (W/O) emulsion into the impregnation material. Conventionally, polyurethane sponges having porous network structures and hard textures have been dominantly used. It has an advantage of easy to manufacture because of its good impregnation property due to its structural characteristics. However, it releases emulsion too much at first use, and shows unexpected dramatic decline during the period of usage. In this study, we studied on makeup W/O emulsion with various features and developed the new foaming sponge, which showed excellent formability and proper absorption and discharge ability of cosmetic composition through the combination of natural rubber (NR) and styrene butadiene rubber (SBR). This impregnation material is characterized by the softness of elasticity like a rubber, high elongation and uniform output. We confirmed that this material can be used to develop makeup products using various oils depending on polarity and controlling the viscosity of the makeup W/O emulsion. Thus, it is concluded that these results provide valuable information in developing new cosmetics impregnation materials.

Sustained Release of Anthocyanin from Porous Poly(lactic-co-glycolide) Microsparticles Developed for the Treatment of Chronic Obstructive Pulmonary Disease

  • Yoo, Na-Young;Baik, Hye-Jung;Lee, Bo-Reum;Youn, Yu-Seok;Oh, Kyung-Taek;Lee, Eun-Seong
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.4
    • /
    • pp.231-236
    • /
    • 2010
  • This study was to fabricate the porous poly(lactide-co-glycolide) (PLGA) microparticles with anthocyanin (as a model antioxidant) for pulmonary drug delivery. The highly porous PLGA microparticles were prepared by the waterin-oil-in-water ($W_1/O/W_2$) multi-emulsion method, followed by the decomposition of ammonium bicarbonate (AB) in $W_1$ phase to the base of ammonia, carbon dioxide and water vapor at $50^{\circ}C$, making a porous structure in PLGA microparticles. Herein, hyaluronate (HA), a viscous polysaccharide, was incorporated in the porous microparticles for sustained anthocyanin release. In in vitro release studies, the anthocyanin release from the porous microparticles with HA continued up to 24 hours, while the porous microparticles without HA released 80 wt.% of encapsulated anthocyanin within 2 hours. In addition, these microparticle are expected to be effectively deposited at a lung epithelium due to its high porosity (low density) and avoid alveolar macrophage's uptake in the lung due to its large particle size. We believe that this system has a great pharmaceutical potential as a long acting antioxidant for relieving the oxidative stress in chronic obstructive pulmonary disease (COPD).

Stable Liquid Paraffin-in-Water Nanoemulsions Prepared by Phase Inversion Composition Method (조성 상전이 방법으로 제조된 안정한 액상 파라핀-물 나노에멀젼)

  • Kim, Eun Hee;Cho, Wan Goo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.2
    • /
    • pp.133-139
    • /
    • 2014
  • Oil-in-water nanoemulsions were prepared in the system of water/Span 80-Tween 80/long-chain paraffin oil via the PIC (phase inversion composition) method. With the increase of preparation temperature from $30^{\circ}C$ to $80^{\circ}C$, the diameter of emulsion droplets decreased from 120 nm to 40 nm, proving the formation of nanoemulsions. By varying the HLB (hydrophilic lipophilic balance) of mixed surfactants, we found that there was an optimum HLB around 12.0 ~ 13.0 corresponding to the minimum droplet size. The viscosity of nanoemulsions clearly increased with droplet volume fraction, f, but the droplet size slightly increased. Significantly, at ${\phi}{\leq}0.3$, the size distribution of nanoemulsions kept constant more than 2 months. These results proved that the viscous paraffin oil can hardly be dispersed by the PIC method at $30^{\circ}C$, but the increase in preparation temperature makes it possible for producing monodisperse nanoemulsions. Once the nanoemulsion is produced, the stability against Ostwald ripening is outstanding due to the extremely low solubility of the liquid paraffin oil in the continuous phase. The highly stable nanoemulsions are of great importance in cosmetic applications.

Fabrication and Magnetic Process of 13Cr-1.5Nb-Fe Stainless Sensors (13Cr-1.5Nb-Fe 스텐레스 센서재료의 제조 및 연자기특성)

  • 윤성호;김택기;조용수
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.3
    • /
    • pp.125-130
    • /
    • 1998
  • 13Cr-1.5Nb-Fe alloy powder was fabricated by water atomization method, and ring-shape specimen of this composition was fabricated by oil press, and then sintered in the vacuum furnace. Powder shape, size distribution, composition (C, N, O, S) analysis and saturation magnetization of as-prepared 13Cr-1.5Nb-Fe alloy powder were investigated. Ac permeability and power loss was measured after forming and sintering process. Saturation magnetization and contents of oxygen of the alloy powder is160 emu/g and about 6000 ppm, respectively. 50 % volume fraction indicate particle size of 70$\mu$m. The ac permeability of sintered specimen increases with increasing sintering temperature and forming pressure. The power loss is 107 W/cc at sintering temperature of 1200 $^{\circ}C$, 12 ton/$\textrm{cm}^2$ forming pressure, and 20 KHz. It is the lowest among the prepared specimen.

  • PDF

The Preparation and Release Property of Alginate Microspheres Coated Gelatin-cinnamic Acid (젤라틴-신남산 접합체가 코팅된 알긴산나트륨 마이크로스피어의 제조 및 방출 특성)

  • Lee, Ju Hyup;Ma, Jin Yeul;Kim, Jin-Chul
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.471-475
    • /
    • 2013
  • This study is about photosensitive microspheres prepared by coating alginate microspheres with gelatin-cinnamic acid conjugate. Firstly, alginate microspheres was prepared in water-in-oil (W/O) emulsion and then they were coated with gelatin- cinnamic acid conjugate. Herein, gelatin-cinnamic acid conjugate is obtained by the amidation between an amine group of gelatin and a carboxy group of cinnamic acid. Cinnamic acid is widely used as a photo-responsive material easy to dimerize and dedimeriz under UV irradiation at ${\lambda}$ = 254 nm and ${\lambda}$ = 365 nm, respectively. As shown in SEM-EDS, alginate was successfully coated with gelatin-ciannmic acid. By determining the absorbance of coated microspheres at 270nm, the amount of cinnamic acid per microspheres was 0.13/1. The SEM photos showed the size of coated microspheres is around $10{\mu}m$. And the degrees of dimerization and dedimerization were calculated to be 49% and 23% respectively. Then the release of FITC-dextran from the coated micrspheres was studied and release the degree was 42%. As a result, the coated microspheres have potential to be used as a photo-responsive drug carrier to delivery drugs.

Microencapsulation of Caramel Flavor and Properties of Ready-to-drink Milk Beverages Supplemented with Coffee Containing These Microcapsules

  • Kim, Gur-Yoo;Lee, Jaehak;Lim, Seungtae;Kang, Hyojin;Ahn, Sung-Il;Jhoo, Jin-Woo;Ra, Chang-Six
    • Food Science of Animal Resources
    • /
    • v.39 no.5
    • /
    • pp.780-791
    • /
    • 2019
  • This study aimed to extend the retention of flavor in coffee-containing milk beverage by microencapsulation. The core material was caramel flavor, and the primary and secondary coating materials were medium-chain triglyceride and maltodextrin, respectively. Polyglycerol polyricinoleate was used as the primary emulsifier, and the secondary emulsifier was polyoxyethylene sorbitan monolaurate. Response surface methodology was employed to determine optimum microencapsulation conditions, and headspace solid-phase microextraction was used to detect the caramel flavor during storage. The microencapsulation yield of the caramel flavor increased as the ratio of primary to secondary coating material increased. The optimum ratio of core to primary coating material for the water-in-oil (W/O) phase was 1:9, and that of the W/O phase to the secondary coating material was also 1:9. Microencapsulation yield was observed to be approximately 93.43%. In case of in vitro release behavior, the release rate of the capsules in the simulated gastric environment was feeble; however, the release rate in the simulated intestinal environment rapidly increased within 30 min, and nearly 70% of the core material was released within 120 min. The caramel flavor-supplemented beverage sample exhibited an exponential degradation in its flavor components. However, microcapsules containing flavor samples showed sustained flavor release compared to caramel flavor-filled samples under higher storage temperatures. In conclusion, the addition of coffee flavor microcapsules to coffee-containing milk beverages effectively extended the retention of the coffee flavor during the storage period.

Plasma Sex Steroid Hormone Profiles in Artificially Maturing Wild Eel, Anguilla japonica (자연산 뱀장어의 인위적인 성숙 유도에 따른 혈중 성호르몬 변동)

  • Kim, Dae-Jung;Kim, Eung-Oh;Park, Min-Woo;Cho, Yong-Chul;Lim, Sang-Gu
    • Journal of Aquaculture
    • /
    • v.19 no.4
    • /
    • pp.267-274
    • /
    • 2006
  • To understand the changes in plasma levels of sex steroids in the wild Japanese eel Anguilla japonica during artificially maturing process, eels received weekly intraperitoneal injections of a water-in-oil (W/O) type emulsion with Freund`s incomplete adjuvant containing salmon pituitary extract (SPE; 20 mg pituitary powder/fish) were examined. In the weekly Eel's Ringer-treated control wild eels, the body weight (BW) changes of fish decreased slowly during the experiment period. Plasma testosterone (T), $estradiol-17{\beta}\;(E_2)$ and $17a,20{\beta}-dihydroxyprogesterone$ (DHP) levels did not change significantly at the end of the experiment. In the weekly SPE-treated silver eels, however, rapid increase in BW changes occurred after 6 to 10 weeks, and the oocytes of all fish were observed to be in the migratory nucleus stage. Furthermore, significant increase in sex steroid hormones (T and $E_2$) levels occurred from 6 weeks. In the weekly SPE-treated yellow eels, the BW changes of fish increased slowly at 6 weeks and then increased. In these fish, the oocytes were at the tertiary yolk globule stage even at the end of the experiment. Plasma sex steroid hormones profiles revealed individual variability in SPE-treated yellow eels. Plasma T and $E_2$ levels significantly increased at 8 weeks and after 6 weeks, respectively, in SPE-treated yellow eels. In the weekly SPE-treated wild eels (silver and yellow eels), however, plasma DHP levels did not change significantly during the experiment period. In silver eel, final maturation could be induced by weekly administration of SPE using W/O type emulsion.

Formulation of Microemulsion Systems for Transdermal Delivery of Aceclofenac

  • Lee, Jae-Hwi;Lee, Yoon-Jin;Kim, Jong-Seok;Yoon, Mi-Kyeong;Choi, Young-Wook
    • Archives of Pharmacal Research
    • /
    • v.28 no.9
    • /
    • pp.1097-1102
    • /
    • 2005
  • An O/W microemulsion system was developed to enhance the skin permeability of ace-clofenac. Of the oils studied, Labrafil? M 1944 CS was chosen as the oil phase: of the microemulson, as it showed a good solubilizing capacity. Pseudo-ternary phase diagrams were constructed to obtain the concentration range of oil, surfactant, Cremophor ELP, and co-surfactant, ethanol, for micoemulsion formation. Eight different formulations with various values of oil of $6-30\%$, water of $0-80\%$, and the mixture of surfactant and co-surfactant (at the ratio of 2) of $14-70\%$. The in vitro transdermal permeability of aceclofenac from the microemulsions was evaluated using Franz diffusion cells mounted with rat skin. The level of aceclofenac permeated was analyzed by HPLC and the droplet size' of the microemulsions was characterized using a Zetasizer Nano-ZS. Terpenes were added to the microemulsions at a level of $5\%$, and their effects on the skin permeation of aceclofenac were investigated. The mean diameters of the microemulsions ranged between approximately $10\~100nm$, and the skin permeability of the aceclofenac incorporated into the microemulsion systems was 5-fold higher than that of the ethanol vehicle. Of the various terpenes added, limonene had the best enhancing ability. These results indicate that the microemulsion pystem studied is a promising tool for the percutaneous delivery of aceclofenac.

Study of development of Bilge Separator for new IMO Regulation I - Demulsification - (IMO 협약 개정에 따른 Bilge Separator 개발에 관한 연구 I - 에멀젼 분리에 관한 연구 -)

  • Lim Jae-Dong;Park Sang-Ho;Kim In-Soo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.175-179
    • /
    • 2005
  • Treatment of Emulsion is very important to development of Bilge Separator for new IMO Regulation. It is too difficult to demulsify the emulsion in the bilge waste water, so we use chemical treatment to break emulsion stability. Broken oil particle is treated by flotation. Bilge Separator on the Ship doesn't have enough time to treat Bilge waste water because of small space in the ship. For the solution to this problem, we experiment to find primary factor as coagulator, pH, and amount of coagulator. As the basis of test, we decided coagulator, pH and quantity of coagulator.

  • PDF

Colorimetric Based Analysis Using Clustered Superparamagnetic Iron Oxide Nanoparticles for Glucose Detection (클러스터 초상자성체 산화철 나노입자를 이용한 색채학적 해석 기반 당 측정)

  • Choi, Wonseok;Key, Jaehong
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.6
    • /
    • pp.228-234
    • /
    • 2020
  • Superparamagnetic iron oxide nanoparticles (SPIONs) are approved by the Food and Drug Administration (FDA) in the United States. SPIONs are used in magnetic resonance imaging (MRI) as contrast agents and targeted delivery in nanomedicine using external magnet sources. SPIONs act as an artificial peroxidase (i.e., nanozyme), and these reactions were highly stable in various pH conditions and temperatures. In this study, we report a nanozyme ability of the clustered SPIONs (CSPIONs) synthesized by the oil-in-water (O/W) method and coated with biocompatible poly(lactic-co-glycolic acid) (PLGA). We hypothesize that the CSPIONs can have high sensitivity toward H2O2 derived from the reaction between a fixed amount of glucose and glucose oxidase (GOX). As a result, CSPIONs oxidized a 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS) commonly used as a substrate for hydrogen peroxidase in the presence of H2O2, leading to a change in the color of the substrate. We also utilized a colorimetric assay at 417 nm using various glucose concentrations from 5 mM to 1.25 μM to validate β-D-glucose detection. This study demonstrated that the absorbance value increases along with increasing the glucose level. The results were highly repeated at concentrations below 5 mM (all standard deviations < 0.03). Moreover, the sensitivity and limit of detection were 1.50 and 5.44 μM, respectively, in which CSPIONs are more responsive to glucose than SPIONs. In conclusion, this study suggests that CSPIONs have the potential to be used for glucose detection in diabetic patients using a physiological fluid such as ocular, saliva, and urine.