• Title/Summary/Keyword: Vulnerability Analysis Index

Search Result 136, Processing Time 0.027 seconds

Estimation of Weights in Water Management Resilience Index Using Principal Component Analysis(PCA) (주성분 분석(PCA)을 이용한 물관리 탄력성 지수의 가중치 산정)

  • Park, Jung Eun;Lim, Kwang Suop;Lee, Eul Rae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.583-583
    • /
    • 2016
  • 다양한 평가지표가 반영된 복합 지수(Composite Index)는 물관리 정책의 우선순위 결정 및 정책성과의 모니터링에 유용한 도구로 사용되고 있다. 각 지표별 중요도를 나타내는 가중치는 최종 지수의 산정에 영향을 미칠 수 있으며, 그 결정방법도 Data Envelopment Analysis(DEA), Benefit of doubt Approach(BOD), Unobserved Component Model(UCM), Budget Allocation Process(BAP), Analytic Hierarchy Process(AHP), Conjoint Analysis(CA) 등 다양하다. 본 연구에서는 여러 가지 가중치 결정방법 중 통계적 방법인 주성분 분석(Principal Component Analysis, PCA)을 사용하여 Park et al.(2016)이 제시한 물관리 탄력성 지수(Water Management Resilience Index, WMRI)에 대한 가중치를 산정하여 동일 가중치를 적용한 기존 결과와 비교하였다. 물관리 탄력성 지수는 자연조건상 물관리 취약성(Vulnerability), 기존 수자원 인프라의 견고성(Robustness), 물위기 적응전략의 다양성(Redundancy)의 3가지 부지수(sub-index)는 각각 13개, 11개, 7개의 지표(Indicator)로 구성되어 있으며, 117개 중권역을 다목적댐 하류 본류유역(범주 1), 용수공급 및 유량조절이 불가능한 지류(범주 2)와 가능한 지류(범주 3)로 분류하여 적용되었다. 각 부지수별로 추출된 3개, 5개, 3개의 주성분이 전체 자료의 76.4%, 71.2%, 63.2%를 설명하는 것으로 분석되었으며 부지수별 주성분의 고유벡터(Eigenvector)와 고유값(Eigenvalue)를 계산하고 각 지표의 가중치를 산정하였다. 주성분 분석에 의한 가중치와 동일 가중치를 적용하였을 경우와 비교해보면 취약성 부지수 1.9%, 견고성 부지수 1.9%, 다양성 부지수 2.1%의 차이가 나타나며 물관리 탄력성 지수는 0.4%의 차이를 보임에 따라 Park et al.이 제시한 연구결과의 적정성을 확인할 수 있었다. 주성분 분석은 객관적인 가중치 설정을 위한 통계적 접근방법의 하나로써 다양한 물관리 정책지수 산정시 활용될 수 있을 것이며, 향후 다른 가중치 산정방법을 적용함으로써 각 방법에 따른 지수 결과의 민감도 및 장단점을 분석할 수 있을 것으로 판단된다.

  • PDF

A Study on Characteristics Analysis of Swell Wave Accidents and the Establishment of Countermeasures in the East Coast (동해안 너울 사고 특성 분석 및 대응방안 수립)

  • Hwang, Soon-Mi;Oh, Hyeong-Min;Kang, Tae-Soon;Nam, Soo-Yong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.235-241
    • /
    • 2018
  • In this study, we collected cases of accidents caused by swell in the east coast of Korea from 2013 to 2017. The location of the accident, the season, the type of coast and the type of damage were classified and the correlation between the accident and the wave data was analyzed by collecting the observation data of the nearby area at the time of the accident. Also, based on the results of the coastal disaster vulnerability assessment of Korea Hydrographic and Oceanographic Agency, the vulnerability grades of swell accidents area were evaluated. In swell accident area, the average grade of the wave exposure index was 4.91, the wave sensitivity index was 3.87, and the wave impact index was 4.90. As a result, most of the swell accidents occurred in the 5 grade (very vulnerable level) of the wave impact index, and the area of the east coast (78.7%) of the same 5 grade was classified into five types according to the wave sensitivity index result. Finally, a countermeasures was taken for characteristics of each type.

Flood Risk and Vulnerability Analysis by Climate Change in an Urban Stream : A Case Study of the Woo-yi Stream Basin (도시하천의 기후변화에 따른 홍수위험 및 취약성 분석: 우이천유역을 중심으로)

  • Yoon, Sun-Kwon;Moon, Young-Il;Kim, Gui-Yong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.981-981
    • /
    • 2012
  • 최근 지구환경 변화에 따른 기후변화의 영향으로 자연재해의 형태는 점차 대형화, 다양화되고 있으며 극치사상의 발생 빈도가 계속해서 증가하고 있는 추세이다. 특히 도시하천의 경우 인구와 재산이 밀집해 있어 기후변화에 따른 홍수위험 및 취약성이 클 것으로 사료된다. 본 연구에서는 기후 변화에 따른 홍수위험 및 취약성 분석을 위하여 위험도 기반 불확실성을 다루는 수단으로 UQR-MCS (Upper Quartile Range-Monte Carlo Simulation)을 적용하였으며, 다양한 형태의 확률 분포로부터 특정변량(variable)의 확률분포 Quartile을 모의하였다. 또한 기후변화에 따른 도시하천의 홍수위험 및 취약성 평가를 위하여 도시하천에 적합한 홍수위험 및 취약성평가 지수(FVI: flood vulnerability index)를 산정하였으며, 홍수취약성지수는 기후변화(Climate change)와 도시화(Urbanization), 제방월류위험(Overtopping risk) 및 홍수범람 면적(Flood area) 등의 지표를 사용하였다. 각각의 지표는 엔트로피(Entropy) 기법을 적용하여 가중치를 부여하였으며, 표준화과정을 통한 일반화된 지표 값을 산정하였다. 우이천 유역의 기후변화에 따른 홍수위험 및 취약성 지표값은 KMA RCM A1B 시나리오자료를 바탕으로 추정한 미래 확률강수량과 각 인자별 재현기간에 따른 수문변량의 변화를 통하여 산정하였다. 본 연구의 결과는 향후 도시하천의 기후변화에 따른 홍수위험도분석 및 취약성 평가, 극치 수문사상에 대한 신뢰성 있는 분석과 더불어 예상치 못할 이상홍수에 대비한 하천방재 연구에 도움이 되리라 사료된다.

  • PDF

Agricultural Drought Risk Assessment using Reservoir Drought Index (저수지 가뭄지수를 활용한 농업가뭄 위험도 평가)

  • Nam, Won Ho;Choi, Jin Yong;Jang, Min Won;Hong, Eun Mi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.41-49
    • /
    • 2013
  • Drought risk assessment is usually performed qualitatively and quantitatively depending on the definition a drought. The meteorological drought indices have a limit of not being able to consider the hydrological components such as evapotranspiration, soil moisture and runoff, because it does not consider the water demand in paddies and water supply in reservoirs. Agricultural drought was defined as the reservoir storage shortage state that cannot satisfy water requirement from the paddy fields. The objectives of this study were to suggest improved agricultural drought risk assessment in order to evaluate of regional drought vulnerability and severity studied by using Reservoir Drought Index (RDI). The RDI is designed to simulate daily water balance between available water from agricultural reservoir and water requirement in paddies and is calculated with a frequency analysis of monthly water deficit based on water demand and water supply condition. The results indicated that RDI can be used to assess regional drought risk in agricultural perspective by comparing with the historical records of drought in 2012. It can be concluded that the RDI obtained good performance to reflect the historical drought events for both spatially and temporally. In addition, RDI is expected to contribute to determine the exact situation on the current drought condition for evaluating regional drought risk and to assist the effective drought-related decision making.

An Assessment of Ecological Risk by Landslide Susceptibility in Bukhansan National Park (산사태취약성 분석을 통한 북한산국립공원의 생태적 위험도 평가)

  • Kim, Kyung-Tae;Jung, Sung-Gwan;You, Ju-Han;Jang, Gab-Sue
    • Korean Journal of Environment and Ecology
    • /
    • v.22 no.2
    • /
    • pp.119-127
    • /
    • 2008
  • This research managed to establish the space information on incidence factors of landslide targeting Bukhansan National Park and aimed at suggesting a basic data for disaster prevention of a landslide for the period to come in Bukhansan National Park through drawing up the map indicating vulnerability to a landslide and ecological risks by the use of overlay analysis and adding-up estimation matrix analysis methods. This research selected slope angle, slope aspect, slope length, drainage, vegetation index(NDVI) and land use as an assessment factor of a landslide and constructed the spatial database at a level of '$30m\times30m$' resolution. The analysis result was that there existed high vulnerability to a landslide almost all over Uidong and Dobong valleys. As for ecological risks, Dobong valley, Yongueocheon valley, Jeongneung valley and Pyeongchang valley were analyzed to be higher, so it is judged that the impact on a landslide risk should be also considered in time of establishing a management plan for these districts for the time to come.

A study of Assessment for Internal Inundation Vulnerability in Urban Area using SWMM (SWMM을 이용한 도시지역 내수침수 취약성 평가)

  • Shon, Tae-Seok;Kang, Dong-Ho;Jang, Jong-Kyung;Shin, Hyun-Suk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.4
    • /
    • pp.105-117
    • /
    • 2010
  • The topographical depressions in urban areas, the lack in drainage capability, sewage backward flow, road drainage, etc. cause internal inundation, and the increase in rainfall resulting from recent climate change, the rapid urbanization accompanied by economic development and population growth, and the increase in an impervious area in urban areas deteriorate the risk of internal inundation in the urban areas. In this study, the vulnerability of internal inundation in urban areas is analyzed and SWMM model is applied into Oncheoncheon watershed, which represents urban river of Busan, as a target basin. Based on the results, the representative storm sewers in individual sub-catchments is selected and the risk of vulnerability to internal inundation due to rainfall in urban streams is analyzed. In order to analyze the risk and vulnerability of internal inundation, capacity is applied as an index indicating the volume of a storm sewer in the SWMM model, and the risk of internal inundation is into 4 steps. For the analysis on the risk of internal inundation, simulation results by using a SMMM model are compared with the actual inundation areas resulting from localized heavy rain on July 7, 2009 at Busan and comparison results are analyzed to prove the validity of the designed model. Accordingly, probabilistic rainfall at Busan was input to the model for each frequency (10, 20, 50, 100 years) and duration (6, 12, 18, 24hr) at Busan. In this study, it suggests that the findings can be used to preliminarily alarm the possibility of internal inundation and selecting the vulnerable zones in urban areas.

Evaluation of Basin-Specific Water Use through Development of Water Use Assessment Index (이수평가지수 개발을 통한 유역별 물이용 특성 평가)

  • Baeck, Seung Hyub;Choi, Si Jung
    • Journal of Wetlands Research
    • /
    • v.15 no.3
    • /
    • pp.367-380
    • /
    • 2013
  • In this study, sub-indicators, and thematic mid-indexes to evaluate the water use characteristics were selected through historical data analysis and factor analysis, and consisted of the subject approach framework. And the integrated index was developed to evaluate water use characteristics of the watershed. Using developed index, the water use characteristics were assessed for 812 standard basins with the exception for North Korea using data of 1990 to 2007 from the relevant agencies. A sensitivity analysis is conducted for this study to determine the proper way through various normalization and weighting methods. To increase the objectivity of developed index, the history of the damage indicators are excluded in the analysis. In addition, in order to ensure its reliability, results from index with and without consideration of the damage history were compared. Also, the index is also applied to real data for 2008 Gangwon region to verify its field applicability. Through the validation process this index confirmed the adequacy for the indicators selection and calculation method. The results of this study were analyzed based on the spatial and time vulnerability of the basin's water use, which can be applied to various parts such as priority decision-making for water business or policy, mitigations for the vulnerable components of the basin, and supporting measures to establishment by providing relevant information about it.

Future water supply risk analysis using a joint drought management index in Nakdong river basin (결합가뭄관리지수(JDMI)를 이용한 낙동강 유역의 미래 용수공급 위험도 분석)

  • Yu, Ji Soo;Choi, Si-Jung;Kwon, Hyun-Han;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.spc
    • /
    • pp.1117-1126
    • /
    • 2018
  • Water supply system aims to meet the user's demand by securing water resources in a stable way. However, water supply failure sometimes happens because inflow decreases during drought period. Droughts induced by the lack of precipitation do not always lead to water supply failures. Thus, it is necessary to consider features of actual water shortage event when we evaluate a water supply risk. In this study, we developed a new drought index for drought management, i.e., Joint Drought Management Index (JDMI), using two water supply system performance indices such as reliability and vulnerability. Future data that were estimated from GCMs according to RCP 4.5 and 8.5 scenarios were used to estimate future water supply risk. After dividing the future period into three parts, the risk of water supply failure in the Nakdong River basin was analyzed using the JDMI. As a result, the risk was higher with the RCP 4.5 than the RCP 8.5. In case of RCP 4.5, W18 (Namgangdam) was identified as the most vulnerable area, whereas in case of RCP 8.5, W23 (Hyeongsangang) and W33 (Nakdonggangnamhae) were identified as the most vulnerable area.

Analysis on the Change of Regional Vulnerability to Flood (홍수피해에 따른 지역적 취약성 변화 분석)

  • Hong, Ji-Hea;Hwang, Jin-Hwan
    • Journal of Environmental Policy
    • /
    • v.5 no.4
    • /
    • pp.1-18
    • /
    • 2006
  • Recently, the damage by fresh flood increases in Gangwon-do and Gyeongsangbuk-do of the north-eastern area of Korea. Even though the recent pattern of rain fall keeps changing, there is no strategy to mitigate damage by disaster. For the appropriate measure and policy for decreasing damage, an index for vulnerability is necessary to provide evidence of local climate change. The present work analyzes the flooding damage cost during the past 20 years. During 80's, the southern area of Korea was seriously damaged by over-floods on the agricultural ground. After that time, the loss and damage has decreased in the southern area but the middle part has shown slight but distinct increases of damage. The absolute coast of damage in the northern part has kept constant. However, the relative regional damage to the total country damage has kept increasing over 20 years in the same area. The surface area of floods is strongly correlated with the regional damage cost in the southern part but the north-eastern part has weak correlation between flooded area and cost. It implies that the recent damage in the north-eastern mountain area was not caused by flood itself but the other factors such as avalanches. The present work expects that the damage cost can be a good proxy value for index for climate change impact assessment.

  • PDF

Drought risk assessment considering regional socio-economic factors and water supply system (지역의 사회·경제적 인자와 용수공급체계를 고려한 가뭄 위험도 평가)

  • Kim, Ji Eun;Kim, Min Ji;Choi, Sijung;Lee, Joo-Heon;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.8
    • /
    • pp.589-601
    • /
    • 2022
  • Although drought is a natural phenomenon, its damage occurs in combination with regional physical and social factors. Especially, related to the supply and demand of various waters, drought causes great socio-economic damage. Even meteorological droughts occur with similar severity, its impact varies depending on the regional characteristics and water supply system. Therefore, this study assessed regional drought risk considering regional socio-economic factors and water supply system. Drought hazard was assessed by grading the joint drought management index (JDMI) which represents water shortage. Drought vulnerability was assessed by weighted averaging 10 socio-economic factors using Entropy, Principal Component Analysis (PCA), and Gaussian Mixture Model (GMM). Drought response capacity that represents regional water supply factors was assessed by employing Bayesian networks. Drought risk was determined by multiplying a cubic root of the hazard, vulnerability, and response capacity. For the drought hazard meaning the possibility of failure to supply water, Goesan-gun was the highest at 0.81. For the drought vulnerability, Daejeon was most vulnerable at 0.61. Considering the regional water supply system, Sejong had the lowest drought response capacity. Finally, the drought risk was the highest in Cheongju-si. This study identified the regional drought risk and vulnerable causes of drought, which is useful in preparing drought mitigation policy considering the regional characteristics in the future.