DOI QR코드

DOI QR Code

Future water supply risk analysis using a joint drought management index in Nakdong river basin

결합가뭄관리지수(JDMI)를 이용한 낙동강 유역의 미래 용수공급 위험도 분석

  • Yu, Ji Soo (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Choi, Si-Jung (Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Kwon, Hyun-Han (Department of Civil Engineering, Chonbuk National University) ;
  • Kim, Tae-Woong (Department of Civil and Environmental Engineering, Hanyang University (ERICA))
  • 유지수 (한양대학교 대학원 건설환경공학과) ;
  • 최시중 (한국건설기술연구원 국토보전연구본부) ;
  • 권현한 (전북대학교 토목공학과) ;
  • 김태웅 (한양대학교 공학대학 건설환경공학과)
  • Received : 2018.06.23
  • Accepted : 2018.11.07
  • Published : 2018.11.30

Abstract

Water supply system aims to meet the user's demand by securing water resources in a stable way. However, water supply failure sometimes happens because inflow decreases during drought period. Droughts induced by the lack of precipitation do not always lead to water supply failures. Thus, it is necessary to consider features of actual water shortage event when we evaluate a water supply risk. In this study, we developed a new drought index for drought management, i.e., Joint Drought Management Index (JDMI), using two water supply system performance indices such as reliability and vulnerability. Future data that were estimated from GCMs according to RCP 4.5 and 8.5 scenarios were used to estimate future water supply risk. After dividing the future period into three parts, the risk of water supply failure in the Nakdong River basin was analyzed using the JDMI. As a result, the risk was higher with the RCP 4.5 than the RCP 8.5. In case of RCP 4.5, W18 (Namgangdam) was identified as the most vulnerable area, whereas in case of RCP 8.5, W23 (Hyeongsangang) and W33 (Nakdonggangnamhae) were identified as the most vulnerable area.

용수공급시스템은 용수를 안정적으로 확보하여 사용자의 수요량을 충족시키는 것을 목표로 하지만, 평년보다 적은 유입량으로 인해 정상공급에 실패하는 경우가 발생한다. 그러나 강수의 부족으로 발생하는 가뭄 상황이 언제나 용수공급 실패를 유발하는 것은 아니기 때문에, 용수공급에 대한 안전도를 산정할 때 실질적인 용수 부족 사상의 특성을 고려할 필요가 있다. 이를 위해 본 연구에서는 이수안전도 평가 지표로 주로 사용되는 신뢰도와 취약도를 이용하여 결합 가뭄관리지수(JDMI)를 개발하였으며, 이를 바탕으로 미래 용수공급 위험도를 산정하였다. 미래에 대한 분석을 위해 RCP 4.5 및 8.5 시나리오에 대하여 GCM으로부터 생산된 기후변화 시나리오 자료를 적용하고 미래 기간을 21세기 전기, 중기, 및 후기로 구분하였다. JDMI를 기반으로 낙동강 유역의 용수공급 위험도를 분석한 결과 RCP 4.5 시나리오에서 RCP 8.5 시나리오보다 위험도가 더 높은 것으로 분석되었다. 용수공급 취약지역은 RCP 4.5에서는 남강댐(W18)으로 나타났으며, RCP 8.5에서는 형산강(W23)과 낙동강남해(W33) 유역으로 분석되었다.

Keywords

SJOHCI_2018_v51nspc_1117_f0001.png 이미지

Fig. 1. The structure and functions of K-WEAP model

SJOHCI_2018_v51nspc_1117_f0002.png 이미지

Fig. 2. Study area – Nakdong river basin

SJOHCI_2018_v51nspc_1117_f0003.png 이미지

Fig. 3. Example of distribution function Kc of Frank Archimedean copula function estimated for W23 of S1

SJOHCI_2018_v51nspc_1117_f0004.png 이미지

Fig. 4. Relationships between copula quantile, Kendall distribution, and JDMI

SJOHCI_2018_v51nspc_1117_f0005.png 이미지

Fig. 5. Comparison between JDMI, reliability and vulnerability estimated with RCP 4.5 and RCP 8.5 scenarios for W23

SJOHCI_2018_v51nspc_1117_f0006.png 이미지

Fig. 6. Change of water supply failure risk of P1 (left), P2 (middle), and P3 (right) based on maximum JMDI estimated from RCP 4.5 scenario

SJOHCI_2018_v51nspc_1117_f0007.png 이미지

Fig. 7. Change of water supply failure risk of P1 (left), P2 (middle), and P3 (right) based on maximum JMDI estimated from RCP 8.5 scenario

Table 1. GCM models used in this study

SJOHCI_2018_v51nspc_1117_t0001.png 이미지

Table 2. Copula functions and Kendall distribution functions used in this study

SJOHCI_2018_v51nspc_1117_t0002.png 이미지

Table 3. Drought event characteristics for P1 (2016-2040), P2 (2041-2070), and P3 (2071-2099)

SJOHCI_2018_v51nspc_1117_t0003.png 이미지

Table 4. Classification of risk based on JMDI

SJOHCI_2018_v51nspc_1117_t0004.png 이미지

References

  1. AghaKouchak, A., Cheng, L., Mazdiyasni, O., and Farahmand, A. (2014). "Global warming and changes in risk of concurrent climate extremes: insights from the 2014 California drought." Geophysical Research Letters, Vol. 41, No. 24, pp. 847-852.
  2. Chang, J., Li, Y., Wang, Y., and Yuan, M. (2016). "Copula-based drought risk assessment combined with an integrated index in the Wei River Basin, China." Journal of Hydrology, Vol. 540, pp. 824-834. https://doi.org/10.1016/j.jhydrol.2016.06.064
  3. Choi, S.-J., Kim, J. H., and Lee, D.-R. (2012). "Decision of the water shortage mitigation policy using multi-criteria decision analysis." KSCE Journal of Civil Engineering, Vol. 16, No.2, pp. 247-253. https://doi.org/10.1007/s12205-012-0008-z
  4. Goharian, E., Burian, S. J., and Karamouz, M. (2018). "Using joint probability distribution of reliability and vulnerability to develop a water system performance index." Journal of Water Resources Planning and Management, Vol. 144, No. 2, pp. 04017081. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000869
  5. Hao, Z., and AghaKouchak, A. (2013). "Multivariate standardized drought index: a parametric multi-index model." Advances in Water Resources, Vol. 57, pp. 12-18. https://doi.org/10.1016/j.advwatres.2013.03.009
  6. Hashimoto, T., Stedinger, J. R., and Loucks, K. P. (1982). "Reliability, resiliency, and vulnerability criteria for water-resource system performance evaluation." Water Resources Research, Vol. 18, No. 1, pp. 14-20. https://doi.org/10.1029/WR018i001p00014
  7. Kao, S.-C., and Govindaraju, R. S. (2010). "A copula-based joint deficit index for drought." Journal of Hydrology, Vol. 380, No. 1-2, pp. 121-134. https://doi.org/10.1016/j.jhydrol.2009.10.029
  8. Kim, S. D., Ryu, J. S., Oh, K. R., and Jeong, S. M. (2012). "An application of copulas-based joint drought index for determining comprehensive drought conditions." Journal of Korean Society of Hazard Mitigation, Vol. 12, No.1, pp. 223-230. https://doi.org/10.9798/KOSHAM.2012.12.1.223
  9. Lee, J.-H., Kwon, H.-H., Jang, H.-W., and Kim, T.-W. (2016). "Future changes in drought characteristics under extreme climate change over South Korea." Advances in Meteorology, Vol. 2016, pp. 1-19.
  10. Lee, J.-H., Park, S.-Y., Kim, J.-S., Sur, C., and Chen, J. (2018). "Extreme drought hotspot analysis for adaptation to a changing climate: assessment of applicability to the five major river basins of the Korean peninsula." International Journal of Climatology, Vol. 38, No. 10, pp. 4025-4032. https://doi.org/10.1002/joc.5532
  11. Loucks, D. P. (1997). "Quantifying trends in system sustainability." Hydrological Sciences Journal, Vol. 42, No. 4, pp. 513-530. https://doi.org/10.1080/02626669709492051
  12. Maity, R., Sharma, A., Kumar, K. N., and Chanda, K. (2013). "Characterizing drought using reliability-resiliency-vulnerability concept." Journal of Hydrologic Engineering, Vol. 18, No. 7, pp. 859-869. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000639
  13. Park, B.-S., Lee, J.-H., Kim, C.-J., and Jang, H.-W. (2013). "Projection of future drought of Korea based on probabilistic approach using multi-model and multi climate change scenarios." Journal of the Korean Society of Civil Engineers, Vol. 33, No. 5, pp. 1871-1885. https://doi.org/10.12652/Ksce.2013.33.5.1871
  14. Salvadori, G., and De Michele, C. (2011). "Estimating strategies for multi-parameter multivariate extreme value copulas." Hydrology and Earth System Sciences Discussions, Vol. 7, No. 5, pp. 7563-7590. https://doi.org/10.5194/hessd-7-7563-2010
  15. So, J. M., Sohn, K. H., and Bae, D. H. (2014). "Estimation and assessment of bivariate joint drought index based on copula functions." Journal of Korea Water Resources Association, Vol. 47, No. 2, pp. 171-182. https://doi.org/10.3741/JKWRA.2014.47.2.171
  16. So, J. M., Sohn, K. H., and Bae, D. H. (2015). "Development and assessment of drought damage estimation technique using drought characteristic factors." Journal of Korean Society of Hazard Mitigation, Vol. 15, No. 2, pp. 93-101. https://doi.org/10.9798/KOSHAM.2015.15.2.93
  17. Xu, K., Yang, D., Xu, X., and Lei, H. (2015). "Copula based drought frequency analysis considering the spatio-temporal variability in Southwest China." Journal of Hydrology, Vol. 527, pp. 630-640. https://doi.org/10.1016/j.jhydrol.2015.05.030
  18. Xu, Z., Jinno, K., Kawamura, A., Takesaki, S., and Ito, K. (1998). "Performance risk analysis for Fukuoka water supply system." Water Resources Management, Vol. 12, No. 1, pp. 13-30. https://doi.org/10.1023/A:1007951806144
  19. Yu, J., Park, Y. J., Kwon, H.-H., and Kim, T.-W. (2018). "Probabilistic assessment of meteorological drought over South Korea under RCP scenarios using a Hidden Markov Model." KSCE Journal of Civil Engineering, Vol. 22, No. 1, pp. 365-372. https://doi.org/10.1007/s12205-017-0788-2
  20. Zhang, Q., Xiao, M., Singh, V. P., and Chen, X. (2013). "Copula-based risk evaluation of hydrological droughts in the East River basin, China." Stochastic Environmental Research and Risk Assessment, Vol. 27, No. 6, pp. 1397-1406. https://doi.org/10.1007/s00477-012-0675-9