Direct volume rendering (DVR) is an important 3D visualization method for medical images as it depicts the full volumetric data. However, because DVR renders the whole volume, regions of interests (ROIs) such as a tumor that are embedded within the volume maybe occluded from view. Thus, conventional 2D cross-sectional views are still widely used, while the advantages of the DVR are often neglected. In this study, we propose a new visualization algorithm where we augment the 2D slice of interest (SOI) from an image volume with volumetric information derived from the DVR of the same volume. Our occlusion-based DVR augmentation for SOI (ODAS) uses the occlusion information derived from the voxels in front of the SOI to calculate a depth parameter that controls the amount of DVR visibility which is used to provide 3D spatial cues while not impairing the visibility of the SOI. We outline the capabilities of our ODAS and through a variety of computer tomography (CT) medical image examples, compare it to a conventional fusion of the SOI and the clipped DVR.
Ye, Soo-Young;Kim, Hyo-Sung;Yi, Young-Youl;Nam, Ki-Gon
제어로봇시스템학회:학술대회논문집
/
제어로봇시스템학회 2005년도 ICCAS
/
pp.1695-1700
/
2005
In this paper, we propose an optimal thresholding method for the voxel coloring in the reconstruction of a 3D shape. Our purposed method is a new approach to resolve the trade-off error of the threshold value on determining the photo-consistency in the conventional method. Optimal thresholding value is decided to compare the surface voxel of photo-consistency with inside voxel on the optic ray of the center camera. As iterating the process of the voxels, the threshold value is approached to the optimal value for the individual surface voxel. And also, graph cut method is reduced to the surface noise on eliminating neighboring voxel. To verify the proposed algorithm, we simulated in the virtual and real environment. It is advantaged to speed up and accuracy of a 3D face reconstruction by applying the methods of optimal threshold and graph cut as compare with conventional algorithms.
Pattern recognition in three dimensional image is highly sensitive to assigned value and formation of voxels (pixels for two dimension case). However, occurred while digital imaging, digitization error leads to unpredictable noises in image data. Skeletonization, a powerful tool of pattern recognition, is sensitively dependent on boundary formation. Without successful controlling of the noises, the results of skeletonization can not be allowed as a stable solution. To minimize the effect of noises affecting to boundary formation, we developed a robust processing method useful in skeletonization technique for pattern recognition. Finally, we provide rigorous test results achieved throughout simulation on analytic three dimensional image.
In this paper, a method of constructing a rectangular net from unorganized point cloud data is presented. In the method an implicit surface that fits the given point data is generated by using principal component analysis(PCA) and adaptive domain decomposition method(ADDM). Then a complete and quality rectangular net can be obtained by extracting voxel data from the implicit surface and projecting exterior faces of extracted voxels onto the implicit surface. The main advantage of the proposed method is that a quality rectangular net can be extracted from randomly scattered 3D points only without any further information. Furthermore the results of this works can be used to obtain many useful information including a slicing data, a solid STL model and a NURBS surface model in many areas involved in treatment of large amount of point data by proper processing of implicit surface and rectangular net generated previously.
대한전자공학회 2004년도 ICEIC The International Conference on Electronics Informations and Communications
/
pp.361-364
/
2004
This paper describes an automatic 3D models generation algorithm based on 2D silhouette images, using X-ray camera without camera parameters. The algorithm takes a multi steps process approach. First, a series of 2D silhouette images is captured from different directions of object and then converted to binary images. An octree data structure is constructed for voxel-based representation of object. An estimate 3D volume of object can be reconstructed by intersecting voxels and the 2D silhouettes. The marching cube algorithm is applied to get triangle mesh representing of the obtained 3D model for rendering.
In this paper, we present an effective system for the 3D scene labeling of objects from RGB-D videos. Our system uses a Markov Random Field (MRF) over a voxel representation of the 3D scene. In order to estimate the correct label of each voxel, the probabilistic graphical model integrates both scores from sliding window-based object detectors and also from object location prior maps. Both the object detectors and the location prior maps are pre-trained from manually labeled RGB-D images. Additionally, the model integrates the scores from considering the geometric constraints between adjacent voxels in the label estimation. We show excellent experimental results for the RGB-D Scenes Dataset built by the University of Washington, in which each indoor scene contains tabletop objects.
Ray-tracing based method for computing projection image calculates the exact amounts of the intersection between voxels and a ray. Among several different implementations of the ray tracing based methods, Siddon's method is the earliest one. Later faster implementation such as Jacobs's method, Zhao's method, were investigated. To our knowledge, Zhao's method is the fastest one among these. We improve the speed of the Zhao's method by predicting the number of the same intersection length between voxel and a ray. In our experiment, the proposed method showed significantly faster computation speed than Zhao's method.
International Journal of Advanced Culture Technology
/
제9권4호
/
pp.302-306
/
2021
Indoor localization is one of the basic elements of Location-Based Service, such as indoor navigation, location-based precision marketing, spatial recognition of robotics, augmented reality, and mixed reality. We propose a Voxel Labeling-based visual positioning system using object simultaneous localization and mapping (SLAM). Our method is a method of determining a location through single image 3D cuboid object detection and object SLAM for indoor navigation, then mapping to create an indoor map, addressing it with voxels, and matching with a defined space. First, high-quality cuboids are created from sampling 2D bounding boxes and vanishing points for single image object detection. And after jointly optimizing the poses of cameras, objects, and points, it is a Visual Positioning System (VPS) through matching with the pose information of the object in the voxel database. Our method provided the spatial information needed to the user with improved location accuracy and direction estimation.
Volumetric 3D displays generate voxels to enable users to watch three-dimensional virtual objects from various angles, and they have a significant advantage over other types of 3D displays in terms of realism and the absence of vergence-accommodation conflict (VAC). By virtue of these advantages, various volumetric 3D display technologies incorporating novel approaches have been introduced competitively. As a result, the conventional classification criteria for volumetric 3D technology often fall short in categorizing these innovative methods. In this study, we present an improved classification framework capable of accommodating these new technologies. We expect that a new classification may offer some intuition to identify areas of technical deficiency and contribute to improving the technology.
뇌의 하부 구조인 해마의 전역적 부피 감소와 국부적 형상 변화는 정신의학적 질환에 깊게 관련되어 있다. 해마 구조에 관한 형상 분석 연구는 크게 해마 형상 표현 모델을 구축하고, 이러한 형상 표현으로부터 형상 유사성을 계산하는 과정으로 구성된다. 본 논문에서는 메쉬, 복셀, 골격 데이터를 포함하는 복합적인 옥트리 기반의 형상 표현을 이용하여 해마의 형상을 분석하기 위한 새로운 방법을 제시한다. 우선 해마에 관한 MRI 데이터를 입력으로 받아, 마칭큐브 알고리즘을 사용하여 다해상도 메쉬 모델을 구축한다. 이렇게 구성된 다각형 모델은 깊이맵 기반의 복셀화 방법을 이용하여 중간 단계의 이진 복셀 데이터로 변환된다. 그리고 변환된 복셀 데이터로부터 슬라이스 기반의 골격화 방법에 의하여 해마의 3차원 골격을 추출한다. 그런 후에 옥트리 기반의 다해상도 형상 표현을 얻기위해 해마의 메쉬, 복셀, 골격 데이터를 계층적으로 공간 분할하여 저장하고, 광선 추적 기반의 메쉬 샘플링 방법을 적용하여 샘플 메쉬 데이터를 추출한다. 최종적으로, 형상간 유사성 측정을 위하여 추출된 골격으로부터 방사되는 광선들과 충돌되는 각 샘플 메쉬 쌍에 대하여 $L_2$과 하우스도르프 거리를 계산하고 인터랙티브한 국부적 형상 분석을 지원하기 위하여 마우스 피킹 인터페이스를 채택한다. 이것은 형상의 국부적 변화에 대하여 다양한 해상도에 기반한 형상 분석을 가능하게 한다. 본 논문에서는 실험을 통하여, 제시한 형상 분석 방법이 회전과 스케일 등의 변환에 강인하고, 특히 형상의 국부적 변화 정도를 정확도를 유지하면서 빠르게 평가하는데에 효과적임을 확인하였다. 경로의 수신 신호가 완전 동기 된 수신 신호임을 확인하였다.omonas aeruginosa PA01과 $82\%$로 가장 높은 유사성을 보였고 Pseudomonas arvilla C-1와는 $71\%,$ Pseudomonas putida KT2440과는 $59\%,$ 그리고 Pseudomonas sp. CA10과는 $53\%$의 상동성이 각각 존재하는 것으로 확인하였다.)을 가지고 있음이 확인되었다. 사람에 직접적인 유해성을 가지고 있는 지 확인하기 위해 사람 방광 유래의 T-24세포와 장내 표피 유래의 Caco-2세포에 대한 부착능을 시험하였을 때, 16균주$(42.1\%)$가 T-24방광 세포에, 그리고 17균주$(44.7\%)$가 Caco-2장세포에 대해 강한 부착능을 나타내었다. 특히 11균주$(28.9\%)$는 두 세포 모두에 강한 부착능을 가지고 있었다. Filter mating method를 수행하여 이들 균주들의 독소 생산 유전자와 항생제 내성 유전자가 사람에서 분리된 균주로 전달되는 것을 확인할 수 있었다. 본 실험의 결과는 설사 중상을 나타내는 돼지로부터 분리된 용혈성 E. coli의 독성과 세포 부착능력, 그리고 항생제 내성간의 상호 연관성을 보여주지 않았으나 동물 분리 세균의 항생제 내성과 독소 생산 능력이 유전자 전달을 통해서 뿐만 아니라 세균의 직접 접촉에 의해서도 인체로 전달될 수 있는 것을 보여주는 것이다.다. 본 연구를 토대로 장시간의 체외순환에서는 신장기능을 대표하는 수치들에도
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.