• Title/Summary/Keyword: Vortex lattice method

Search Result 92, Processing Time 0.037 seconds

Aerodynamic Analysis of a Hovering Rotor by the Doublet Panel Method (Doublet Panel Method를 이용한 Hovering Rotor의 공기역학적 해석)

  • Yoo, Neung-Soo;Park, Hong-Nam
    • Journal of Industrial Technology
    • /
    • v.8
    • /
    • pp.31-35
    • /
    • 1988
  • To predict the airloads on helicopter rotors in hover, the doublet panel method of the first order is applied. For this simulation, the rotor blade is divided into many panels both in spanwise and in chordwise direction, and Kocurek-Tangler's prescribed wake with roll-up process is taken for determing wake geometry and then represented by vortex lattice. To abtain more physically realistic calculation of induced velocity, the vortex core model is adopted and the compressibility effect is considered by Karman-Tsien rule.

  • PDF

Simulation of Turbulent Flow Over Square Cylinder Using Lattice Boltzmann Method (LBM을 이용한 사각형 실린더 주위의 난류유동해석)

  • Kim Hyung-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.5 s.248
    • /
    • pp.438-445
    • /
    • 2006
  • We performed the simulation of the unsteady three dimensional flow over a square cylinder in a wind tunnel in moderate Reynolds number range, $100{\sim}2500$ by using LBM. SGS model was applied for the turbulent flow. Frist of all we compared LBM(Lattice Boltzmann Method) solution of Poiseuille flow applied Farout and bounce back boundary conditions with the analytical and FOAM solutions to verify the applicability of the boundary conditions. For LBM simulation the calculation domain was formed by structured grids and prescribed uniform velocity and density inlet and Farout boundary conditions were imposed on the in-out boundaries. Bounceback and wind tunnel boundary conditions were applied to the cylinder walls and the boundaries of calculation domain respectively. The maximum Strouhal number of the vortex shedding is 0.2025 at Re = 750. and the number maintains the constant value of 0.18 when Re>1000. We also predicted that the critical reynolds number of the turbulent flow is in the range of $250{\sim}500$.

Influence of a rear spoiler on a squareback car wake (리어 스포일러 장착에 의한 자동차 후류의 변화 연구)

  • Baek, Seung-Jin;Oh, Min-Soo;Lee, Jung-Ho;Kim, Moo-Sang
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1825-1829
    • /
    • 2004
  • A numerical simulation was performed of flow behind a squareback car with a rear spoiler. Influence of the rear spoiler on drag force has been studied. A lattice Boltzmann method was utilized to portray the unsteady aerodynamics of wake flows. The pressure distributions were employed to examine the vortex formation mode against the rear spoiler. It was found that the separation flow at roof end and c-pillar makes three dimensional vortex structures and the rear spoiler increases pressure on the rear glass surface.

  • PDF

A Numerical and Experimental Procedure for the Open Water Characteristics of Contra-Rotating Propellers for EEDI Improvement (EEDI 개선을 위한 상반 회전 프로펠러 단독성능 분석용 수치해석과 모형시험에 대한 연구)

  • Kim, Moon Chan;Song, Mu Seok;Kang, Hyeon Ji;Kim, Dong Eon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.4
    • /
    • pp.248-254
    • /
    • 2013
  • Recently, contra-rotating propellers (CRP) having higher efficiency draw much attention since the EEDI regulation of IMO has been enforced. In this paper a numerical method based on the vortex lattice potential theory with a wake model and an experimental procedure with a newly built measuring device, specifically focusing on CRPs, are introduced. And they are applied to a series of CRP known to be designed for the purpose of improving EEDI. The numerical and experimental results showed good agreement explaining the characteristics of the CRP properly. The proposed method is believed to be effectively used for various CRP related studies.

Direct Simulation of Acoustic Sound by the Finite Difference Lattice Boltzmann Method (차분격자볼츠만법에 의한 유체음의 직접계산)

  • Kang, Ho-Keun;Ro, Ki-Deok;Lee, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1827-1832
    • /
    • 2003
  • In this research, the simulation method for acoustic sounds by a uniform flow around a two-dimensional circular cylinder by using the finite difference lattice Boltzmann model is explained. To begin with, we examine the boundary condition which determined with the distribution function $f_i^{(0)}$ concerning with density, velocity and internal energy at boundary node. Very small acoustic pressure fluctuation, with same frequency as that of Karman vortex street, is compared with the pressure fluctuation around a circular cylinder. The acoustic sound' propagation velocity shows that acoustic approa ching the upstream, due to the Doppler effect in the uniform flow, slowly propagated. For the do wnstream, on the other hand, it quickly propagates. It is also apparently the size of sound pressure was proportional to the central distance $r^{-1/2}$ of the circular cylinder. The lattice BGK model for compressible fluids is shown to be one of powerful tool for simulation of gas flows.

  • PDF

Calculation of the Rudder Normal Force for a Horn Type Rudder and Twin Rudder (Horn Type 타(舵)와 한쌍(雙)의 타(舵)의 타직압력(舵直壓力) 계산(計算)에 관한 연구(硏究))

  • Seung-Keon,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.4
    • /
    • pp.27-31
    • /
    • 1990
  • To calculate the lift of a thin lifting surface like the ship-rudder, it is popular to replace the lifting surface by a series of vortices. Two methods, which are vortex lattice method and mode function method, are frequently used to distribute the vortices on the lifting surface. In this paper, the intermediate way of two mentioned calculation method is carried out to exploit the merits of them. The basic concept of this method is to divide the lifting surface with several strips in span-wise and replace vortices to the chord-wise at each strips. A horn type semi-balanced rudder is chosen for the real method, and the validity of the proposed calculation is pursued by the open water test of the same rudder. Finall, this method is applied to the calculation of the interference between the two homogenous rudders siting parallel to the free stream.

  • PDF

Numerical Analysis of Flow-Induced Noise by Vortex-Edge Interaction (Vortex-Edge의 상호작용에 기인한 유동소음의 전산해석)

  • KANG HO-KEUN;KIM EUN-RA
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.5
    • /
    • pp.15-21
    • /
    • 2004
  • An edge tone is the discrete tone or narrow-band sound produced by an oscillating free shear layer, impinging on a rigid surface. In this paper, we present a 2-D edge tone to predict the frequency characteristics of the discrete oscillations of a jet-edge feedback cycle, using the finite difference lattice Boltzmann method (FDLBM). We use a modified version of the lattice BGK compressible fluid model, adding an additional term and allowing for longer time increments, compared to a conventional FDLBM, and also use a boundary fitted coordinates system. The jet is chosen long enough in order to guarantee the parabolic velocity profile of the jet at the outlet, and the edge consists of a wedge with an angle of ${\alpha}$ = 23. At a stand-off distance, the edge is inserted along the centerline of the jet, and a sinuous instability wave, with real frequency, is assumed to be created in the vicinity of the nozzle and propagates towards the downstream. We have succeeded in capturing very small pressure fluctuations, resulting from periodical oscillations of a jet around the edge. The pressure fluctuations propagate with the speed of sound. Its interaction with the wedge produces an non-rotational feedback field, which, near the nozzle exit, is a periodic transverse flow, producing the singularities at the nozzle lips.

Numerical Investigation of Aerodynamic Sounds by Vortex-Edge Interaction (Vortex-Edge 의 상호작용에 의한 유동소음의 수치계산)

  • Kang, Ho-Keun;Kim, Jeong-Hwan;Kim, Yu-Taek;Lee, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1915-1920
    • /
    • 2004
  • An edge tone is the discrete tone or narrow-band sound produced by an oscillating free shear layer impinging on a rigid surface. In this paper we present a two-dimensional edge tone to predict the frequency characteristics of the discrete oscillations of a jet-edge feedback cycle by the finite difference lattice Boltzmann method. We use a new lattice BGK compressible fluid model that has an additional term and allow larger time increment comparing a conventional FDLB model, and also use a boundary fitted coordinates. The jet is chosen long enough in order to guarantee the parabolic velocity profile of the jet at the outlet, and the edge consists of a wedge with an angle of ${\alpha}=23^{\circ}$ . At a stand-off distance ${\omega}$ , the edge is inserted along the centreline of the jet, and a sinuous instability wave with real frequency f is assumed to be created in the vicinity of the nozzle and to propagate towards the downstream. We have succeeded in capturing very small pressure fluctuations result from periodically oscillation of jet around the edge. That pressure fluctuations propagate with the sound speed. Its interaction with the wedge produces an irrotational feedback field which, near the nozzle exit, is a periodic transverse flow producing the singularities at the nozzle lips.

  • PDF

Numerical Simulation of Aerodynamic Sound by the Finite Difference Lattice Boltzmann Method (차분격자볼츠만법에 의한 유동소음의 수치계산)

  • 강호근;김은라
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.10-17
    • /
    • 2004
  • In this research, a numerical simulation for the acoustic sounds around a two-dimensional circular cylinder in a uniform flaw was developed, using the finite difference lattice Boltzmann model. We examine the boundary condition, which is determined by the distribution function concerning density, velocity, and internal energy at the boundary node. Pressure variation, due to the emission of the acoustic waves, is very small, but we can detect this periodic variation in the region far from the cylinder. Daple-like emission of acoustic waves is seen, and these waves travel with the speed of sound, and are synchronized with the frequency of the lift on the cylinder, due to the Karman vortex street. It is also apparent that the size of the sound pressure is proportional to the central distance to the circular cylinder. The lattice BGK model for compressible fluids is shown to be a powerful tool for the simulation of gas flaws.

A numerical study of the incompressible flow over a circular cylinder near a plane wall using the Immersed Boundary - Finite Difference Lattice Boltzmann Method (가상경계 유한차분 격자 볼츠만 법을 이용한 평판근처 원형 실린 더 주위의 비압축성 유동에 관한 수치적 연구)

  • Yang, Hui-Ju;Jeong, Hae-Kwon;Kim, Lae-Sung;Ha, Man-Yeong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2731-2736
    • /
    • 2007
  • In this paper, incompressible flow over a cylinder near a plane wall using the Immersed Boundary. Finite Difference Lattice Boltzmann Method (IB-FDLBM) is implemented. In this present method, FDLBM is mixed with IBM by using the equilibrium velocity. We introduce IBM so that we can easy to simulate bluff-bodies. With this numerical procedure, the flow past a circular cylinder near a wall is simulated. We calculated the flow patterns about various Reynolds numbers and gap ratios between a circular cylinder and plane wall. So these are enabled to observe for vortex shedding. The numerical results are found to be in good agreement with those of previous studies.

  • PDF