DOI QR코드

DOI QR Code

A Numerical and Experimental Procedure for the Open Water Characteristics of Contra-Rotating Propellers for EEDI Improvement

EEDI 개선을 위한 상반 회전 프로펠러 단독성능 분석용 수치해석과 모형시험에 대한 연구

  • Kim, Moon Chan (Department of Naval Architecture & Ocean Engineering, Pusan National University) ;
  • Song, Mu Seok (Department of Naval Architecture & Ocean Engineering, Hongik University) ;
  • Kang, Hyeon Ji (Department of Naval Architecture & Ocean Engineering, Pusan National University) ;
  • Kim, Dong Eon (STX Offshore & Shipbuilding)
  • Received : 2013.10.14
  • Accepted : 2013.10.19
  • Published : 2013.11.25

Abstract

Recently, contra-rotating propellers (CRP) having higher efficiency draw much attention since the EEDI regulation of IMO has been enforced. In this paper a numerical method based on the vortex lattice potential theory with a wake model and an experimental procedure with a newly built measuring device, specifically focusing on CRPs, are introduced. And they are applied to a series of CRP known to be designed for the purpose of improving EEDI. The numerical and experimental results showed good agreement explaining the characteristics of the CRP properly. The proposed method is believed to be effectively used for various CRP related studies.

IMO가 도입한 Energy Efficiency Design Index (EEDI)의 강제로 최근 관심이 증가되고 있는 상반회전 프로펠러(Contra-Rotating Propeller, CRP)의 단독 상태에서의 성능평가를 위한 보오텍스격자법(Vortex Lattice Method) 기반의 포텐셜 수치해법과 모형시험법을 확립하고 이를 특정 CRP에 적용하여 유용성을 검증하였다. 대상 CRP는 EEDI 개선을 목적으로 설계된 것으로 그 성능을 본 연구의 수치 및 실험 해석을 바탕으로 분석하였다. CRP의 설계점을 포함한 주 작동 영역에 대해 계산과 실험이 좋은 일치를 보임을 확인하였고, 본 연구를 통하여 제안된 기법은 향후 CRP 설계 및 성능해석에 유용하게 사용될 수 있으리라 생각된다.

Keywords

References

  1. Cha, D.-R., 1992, "A Study on the Performance Prediction of Contra-Rotating Propellers", M.S. Thesis, Department of Naval Architecture and Ocean Engineering, Chungnam National University, Dajeon, Korea
  2. Greeley, D.S. and Kerwin, J.E., 1982, "Numerical methods for propeller design and analysis in steady flow", Trans. SNAME, Vol. 90.
  3. Hoshino, T., 1989, "Hydrodynamic analysis of propellers in steady flow using a surface panel method", J. of Soc. of Naval Arch. of Japan, Vol. 165, 55-70.
  4. IMO, 2011. Mandatory energy efficiency measures for international shipping adopted at IMO environment meeting. [online] Available at: [Accessed 10 July 2013].
  5. ITTC, 1978, "Report of the Performance Committee", Proceedings of 15th ITTC, Hague.
  6. Jang, J.-Y., Kim, M.-C., Lee, W.-J., Mun, W.-J., Kim, D.-U., Kim, D.-J., 2012, "Study on the Self Propulsion Performance for the Contra-Rotating Propeller", Proceedings of the Annual Autumn Meeting, SNAK, Changwon, 15-16 November, 704-708.
  7. Jung, R.-T., 2011, "Recent International Development on the Technical and Operational Measures of IMO's $CO_2$ Emission Control From Ships", J. of KOSMEE, Vol. 14, No. 1, 65-71.
  8. Kerwin, J.E., 1973, "Computer Techniques for Propeller Blade Section Design", International Shipbuilding Progress, Rotterdam, The Netherlands, Vol. 20, No. 227, 227-251.
  9. Kerwin, J.E. and Lee, C.-S., 1978, "Prediction of steady and unsteady marine propeller performance by numerical lifting surface theory", Trans. SNAME, Vol. 86, 218-258.
  10. Lee, J.-T., 1987, "A potential-based panel method for the analysis of marine propellers in steady flow", Ph.D. Thesis, Department of Ocean Engineering, M.I.T., Cambridge, Mass.
  11. Min, K.-S., Chang, B.-J. and Seo, H.-W., 2009, "Study on the Contra-Rotating Propeller system design and full-scale performance prediction method", Inter J. of NAOE, Vol. 1, No. 1, 29-38.
  12. Morino, L. and Kuo, C.-C., 1974, "Subsonic potential aerodynamic for complex configurations: a general theory", AIAA Journal, Vol. 12, No. 2, 191-197. https://doi.org/10.2514/3.49191
  13. Paik, K.-J., Suh, S.-B. and Chun, H.-H., 2000, "Analysis of Contra-Rotating Propellers in Steady Flow by a Vortex Lattice Method", KSOE, Vol. 14, No. 2, 36-43.
  14. SNAK, 2009, "Resistance and Propulsion of Ships", Jisungsa, 347-348.

Cited by

  1. Development of the New Energy Saving Device for the Reduction of Fuel of 176k Bulk Carrier vol.52, pp.6, 2015, https://doi.org/10.3744/SNAK.2015.52.6.419