• Title/Summary/Keyword: Von-Mises stress

Search Result 532, Processing Time 0.031 seconds

A Study for Relation Between Fatigue and Structural Members on Othortropic Steel Deck (직교이방성 강바닥판 피로와 구조부재의 관계에 대한 연구)

  • Park, Jong In;Hong, Sung Nam;Kim, Tae Wan;Park, Sun Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.41-50
    • /
    • 2012
  • Improvement of steel material quality made fatigue problems more critical than failure of the material itself. In many cases, cracks on the welded parts of steel deck bridges are reported against the failure of steel materials. And the cracks are caused by alternate stress on the welded parts due to live loads on the bridge. The range of alternate stress on the welded part is related to property of the sections which compose othortropic steel deck. Othortropic steel deck is mainly composed of deck plate, ribs and floor beams, wearing surface, etc. In this paper, a methology to estimate the alternate stress for pthortropic steel deck using Pelikan-Esslinger method and signed Von-Mises equivalent stress is proposed first. Parametric study served references for fatigue stresses when designing or repairing othortropic steel deck bridges, by analyzing relationship between alternate stress range and properties of steel deck members.

Comparative finite element analysis of mandibular posterior single zirconia and titanium implants: a 3-dimensional finite element analysis

  • Choi, Sung-Min;Choi, Hyunsuk;Lee, Du-Hyeong;Hong, Min-Ho
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.6
    • /
    • pp.396-407
    • /
    • 2021
  • PURPOSE. Zirconia has exceptional biocompatibility and good mechanical properties in clinical situations. However, finite element analysis (FEA) studies on the biomechanical stability of two-piece zirconia implant systems are limited. Therefore, the aim of this study was to compare the biomechanical properties of the two-piece zirconia and titanium implants using FEA. MATERIALS AND METHODS. Two groups of finite element (FE) models, the zirconia (Zircon) and titanium (Titan) models, were generated for the exam. Oblique (175 N) and vertical (175 N) loads were applied to the FE model generated for FEA simulation, and the stress levels and distributions were investigated. RESULTS. In oblique loading, von Mises stress values were the highest in the abutment of the Zircon model. The von Mises stress values of the Titan model for the abutment screw and implant fixture were slightly higher than those of the Zircon model. Minimum principal stress in the cortical bone was higher in the Titan model than Zircon model under oblique and vertical loading. Under both vertical and oblique loads, stress concentrations in the implant components and bone occurred in the same area. Because the material itself has high stiffness and elastic modulus, the Zircon model exhibited a higher von Mises stress value in the abutments than the Titan model, but at a level lower than the fracture strength of the material. CONCLUSION. Owing to the good esthetics and stress controllability of the Zircon model, it can be considered for clinical use.

Numerical Study on the Design Safety of Corner Protection Structure in Full Containment LNG Storage Tank (완전 밀폐식 LNG 저장탱크에서 코너 프로텍션 구조물의 설계 안전성에 관한 수치적 연구)

  • Kim Chung Kyun;Cho Seung Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.2 s.23
    • /
    • pp.54-60
    • /
    • 2004
  • In this paper, the maximum von Mises stress and maximum displacement of the corner protection and secondary bottom structures have been analyzed using a finite element analysis technique. The design criterion of the comer protection is 1,500Pa for a normal nitrogen gas purging process at the beginning stage of start-up procedure. This pressure is very safe for the structure safety of the comer protection and secondary bottom plates. The corner protection and secondary bottom plates fabricated by $9\%$ nickel steel sheet may plastically be distorted and fractured for the increased gas pressure of 8,475Pa, which produces the maximum von Mises stress of 833MPa and maximum displacement of 1.9m at the center of secondary bottom plate.

  • PDF

CPVC Valve Tightening Torque Impact Sockets on the Leaks (CPVC 밸브소켓 체결토크가 누수발생에 미치는 영향)

  • Lim, Chun-Ki;Baek, Eun-Sun
    • Fire Science and Engineering
    • /
    • v.30 no.4
    • /
    • pp.46-58
    • /
    • 2016
  • In this study, the stress applied to screw section, strain, displacement, von Mises stress, and the compression stress applied to the rubber packing for watertightness are estimated with computer simulation when the tightening torque of valve socket is in the range of $10{\sim}130N{\cdot}m$ in order to analyze the influence of valve socket screw section in accordance with the excessive tightening which is supposed to be the cause of water leakage from the synthetic resin piping for fire fighting application of sprinkler equipment, and for the sake of verifying this, adequate value of tightening torque and the value of the compression stress of rubber packing are investigated by examining the number of connected thread for each tightening torque, the deformation state of valve socket and rubber packing and conducting the water hammering test. The result of this test is expected to be utilized as the data required for revising the standard or technical criteria to prevent the water leakage of the synthetic resin piping for fire fighting application.

The Optimum Design for Minimizing von Mises Stress of Lead Wire (리드용 와이어의 Von Mises 응력 최소화를 위한 최적설계)

  • Park, Chang Hyeong;Cho, Seong-Jin;Han, Seimg Chul;Kim, Jin Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.119-126
    • /
    • 2017
  • High-precision wire is one of the most important components of lead production. However, no studies have been performed on the dimensional tolerance of these wires, and their capabilities have been deduced through trial and error. Therefore, PIANO, a commercial PIDO tool, was used to systematically determine the optimal parameters for stress minimization. The values obtained from the optimum design were modeled and analyzed using LS-Dyna, a finite element analysis program. Maximum stress was reduced by about 10% compared to its initial values, and the wire now satisfies dimensional tolerance ($10{\mu}m$).

An Analysis on Surface Cracking Due to Thermomechanical Loading

  • Kim, S.S.;Lee, K.H.;Lee, S.M.
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.172-176
    • /
    • 1995
  • This study deals with thermomechanical cracking between the friction surface and the interior of the brake disc. Analytical model considered in this study was a semi-infinite solid subjected to the thermal loading of an asperity moving with a high speed. The temperature field and the thermal stress state were obtained and discussed on the basis of Von Mises and Tresca Yielding Criterion. Analytical results showed that the dominant stress in cracking of friction brake is thermal stress and cracking location is dependent on the friction coefficient of contact and Peclet number. On the basis of analytical results thermomechanical cracking model is proposed.

Stress Redistributions due to the Shape of Sliding Core and Applied Load Core in the Artificial Intervertebral Disc (인공추간판 슬라이딩 코어의 형상과 하중모드에 따른 응력 재분포)

  • Kang Bong-Su;Kim Cheol-Woong
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.515-516
    • /
    • 2006
  • The goal of total disc replacement is to restore pain-free mobility to a diseased functional spinal unit, by replacing the degenerated disc with a mobile bearing prosthesis. SB Charite III is named commercial product as the Artificial Intervertebral Disc (AID). SB Charite III consists of sliding core and endplate made by Ultra-high Molecular Weight Polyethylene (UHMWPE) and cobalt chrome alloy, respectively. To evaluate the effect of von-Mises stress in AID, and three-dimensional finite element model of AID analysis was preformed for four different loading types of sliding core. Consequently, endplate was compared with a compressive preload at 400N and flexion moment at $3{\sim}9Nm4. Therefore, this research has obtained result that von-Mises stress of sliding core in AID disc by radius curvature.

  • PDF

An Analysis of Plastic Stress in Square Bar Impacting Plate (평판에 충동하는 사각봉의 소성응력해석)

  • 김기선;조재웅;최두석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.198-204
    • /
    • 2004
  • Dynamic fracture is investigated in plate applied by impacting bar. Numerical simulations of the experiments are made by using a finite element method(FEM) code, LS-DYNA. The eroding surface-to-surface contact allows between impacting bar and impacted plate. The occurrence of hourglass deformations in an analysis can invalidate results and hourglass energy is minimized to obtain the good accuracy of result. Total, internal and kinetic energies, von Mises plastic stress and X,Y,Z velocities of impacting bar are analyzed in this study.

Study on Behavior Characteristics of Embedded PCB for FCCSP Using Numerical Analysis (수치해석을 이용한 FCCSP용 Embedded PCB의 Cavity 구조에 따른 거동특성 연구)

  • Cho, Seunghyun;Lee, Sangsoo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.1
    • /
    • pp.67-73
    • /
    • 2020
  • In this paper, we used FEM technique to perform warpage and von Mises stress analysis on PCB according to the cavity structures of embedded PCB for FCCSP and the types of prepreg material. One-half substrate model and static analysis are applied to the FEM. According to the analysis results of the warpage, as the gap between the cavity and the chip increased, warpage increased and warpage increased when prepreg material with higher modularity and thermal expansion coefficient was applied. The analysis results of the von Mises stress show that the effect of the gap between the cavity and the chip varies depending on prepreg material. In other words, when material whose coefficient of thermal expansion is significantly higher than that of core material, the stress increased as the gap between the cavity and the chip increased. When the prepreg with the coefficient of thermal expansion lower than the core material is applied, the result of stress is opposite. These results indicate that from a reliability perspective, there is a correlation between the structure of the cavity where embedded chips are loaded and prepreg material.

Three-dimensional finite element analysis of platform switched implant

  • Moon, Se-Young;Lim, Young-Jun;Kim, Myung-Joo;Kwon, Ho-Beom
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.1
    • /
    • pp.31-37
    • /
    • 2017
  • PURPOSE. The purpose of this study was to analyze the influence of the platform switching concept on an implant system and peri-implant bone using three-dimensional finite element analysis. MATERIALS AND METHODS. Two three-dimensional finite element models for wide platform and platform switching were created. In the wide platform model, a wide platform abutment was connected to a wide platform implant. In the platform switching model, the wide platform abutment of the wide platform model was replaced by a regular platform abutment. A contact condition was set between the implant components. A vertical load of 300 N was applied to the crown. The maximum von Mises stress values and displacements of the two models were compared to analyze the biomechanical behavior of the models. RESULTS. In the two models, the stress was mainly concentrated at the bottom of the abutment and the top surface of the implant in both models. However, the von Mises stress values were much higher in the platform switching model in most of the components, except for the bone. The highest von Mises values and stress distribution pattern of the bone were similar in the two models. The components of the platform switching model showed greater displacement than those of the wide platform model. CONCLUSION. Due to the stress concentration generated in the implant and the prosthodontic components of the platform switched implant, the mechanical complications might occur when platform switching concept is used.