• Title/Summary/Keyword: Von Karman nonlinear

Search Result 117, Processing Time 0.019 seconds

Snap-through Phenomena on Nonlinear Thermopeizoelastic Behavior of Piezolaminated Plates (압전적층판의 비선형 열압전탄성 거동에서의 스냅-스루 현상)

  • Oh, Il-Kwon;Lee, In
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.232-237
    • /
    • 2000
  • Thermopiezoelastic snap-through phenomena of piezolaminated plates are numerically investigated by applying a cylindrical arc-length scheme to Newton-Raphson method. Based on the layerwise displacement theory and von-Karman strain-displacement relationships, nonlinear finite element formulations are derived for thermopiezoelastic composite plates. From the static and dynamic viewpoint, nonlinear thermopiezoelastic behavior and vibration characteristics are studied for symmetric and eccentric structural models with various piezoelectric actuation modes. Present results show the possibility to enhance the performance of thermal structures using piezoelectric actuators and report new phenomena, namely thermopiezoelastic snapping, induced by the excessive piezoelectric actuation in the active suppression of thermally buckled large deflection of piezolaminated plates.

  • PDF

Nonlinear dynamic buckling of laminated angle-ply composite spherical caps

  • Gupta, S.S.;Patel, B.P.;Ganapathi, M.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.4
    • /
    • pp.463-476
    • /
    • 2003
  • This paper deals with nonlinear asymmetric dynamic buckling of clamped laminated angle-ply composite spherical shells under suddenly applied pressure loads. The formulation is based on first-order shear deformation theory and Lagrange's equation of motion. The nonlinearity due to finite deformation of the shell considering von Karman's assumptions is included in the formulation. The buckling loads are obtained through dynamic response history using Newmark's numerical integration scheme coupled with a Newton-Raphson iteration technique. An axisymmetric curved shell element is used to investigate the dynamic characteristics of the spherical caps. The pressure value beyond which the maximum average displacement response shows significant growth rate in the time history of the shell structure is considered as critical dynamic load. Detailed numerical results are presented to highlight the influence of ply-angle, shell geometric parameter and asymmetric mode on the critical load of spherical caps.

Nonlinear cylindrical bending of functionally graded carbon nanotube-reinforced composite plates

  • Kaci, Abdelhakim;Tounsi, Abdelouahed;Bakhti, Karima;Adda Bedia, El Abbas
    • Steel and Composite Structures
    • /
    • v.12 no.6
    • /
    • pp.491-504
    • /
    • 2012
  • In this paper, the nonlinear cylindrical bending of simply supported, functionally graded nanocomposite plates reinforced by single-walled carbon nanotubes (SWCNTs), is studied. The plates are subjected to uniform pressure loading in thermal environments and their geometric nonlinearity is introduced in the strain-displacement equations based on Von-Karman assumptions. The material properties of SWCNTs are assumed to be temperature-dependent and are obtained from molecular dynamics simulations. The material properties of functionally graded carbon nanotube-reinforced composites (FG-CNTCRs) are assumed to be graded in the thickness direction, and are estimated through a micromechanical model. The governing equations are reduced to linear differential equation with nonlinear boundary conditions yielding a simple solution procedure. Numerical results are presented to show the effect of the material distribution on the deflections and stresses.

Nonlinear Vibration Analysis of Rotating Ring (회전하는 링의 비선형 진동해석)

  • Kim, S.K.;Lee, S.I.;Chung, J.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.553-557
    • /
    • 2000
  • Nonlinear Vibrations of a flexible circular ring is studied in this paper. Based upon the von Karman strain theory, the nonlinear governing equations are derived, in which the in-plane bending and extension displacements as well as the out-of-plane bending displacement are fully coupled. After discretizing the governing equations by the Galerkin approximation method, we obtain the linearlized equation by using the pertubation method. The analysis results from the linearlized equations show that the in-plane displacement has effects on the natural frequencies of the out-of-plane displacement.

  • PDF

Investigating nonlinear static behavior of hyperelastic plates using three-parameter hyperelastic model

  • Afshari, Behzad Mohasel;Mirjavadi, Seyed Sajad;Barati, Mohammad Reza
    • Advances in concrete construction
    • /
    • v.13 no.5
    • /
    • pp.377-384
    • /
    • 2022
  • The present paper deals with nonlinear deflection analysis of hyperelastic plates rested on elastic foundation and subject to a transverse point force. For modeling of hyperelastic material, three-parameter Ishihara model has been employed. The plate formulation is based on classic plate theory accounting for von-Karman geometric nonlinearity. Therefore, both material and geometric nonlinearities have been considered based on Ishihara hyperelastic plate model. The governing equations for the plate have been derived based on Hamilton's rule and then solved via Galerkin's method. Obtained results show that material parameters of hyperelastic material play an important role in defection analysis. Also, the effects of foundation parameter and load location on plate deflections will be discussed.

Nonlinear vibration analysis of composite laminated trapezoidal plates

  • Jiang, Guoqing;Li, Fengming;Li, Xinwu
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.395-409
    • /
    • 2016
  • Nonlinear vibration characteristics of composite laminated trapezoidal plates are studied. The geometric nonlinearity of the plate based on the von Karman's large deformation theory is considered, and the finite element method (FEM) is proposed for the present nonlinear modeling. Hamilton's principle is used to establish the equation of motion of every element, and through assembling entire elements of the trapezoidal plate, the equation of motion of the composite laminated trapezoidal plate is established. The nonlinear static property and nonlinear vibration frequency ratios of the composite laminated rectangular plate are analyzed to verify the validity and correctness of the present methodology by comparing with the results published in the open literatures. Moreover, the effects of the ply angle and the length-high ratio on the nonlinear vibration frequency ratios of the composite laminated trapezoidal plates are discussed, and the frequency-response curves are analyzed for the different ply angles and harmonic excitation forces.

Non-linear free and forced vibration analysis of sandwich nano-beam with FG-CNTRC face-sheets based on nonlocal strain gradient theory

  • Arani, Ali Ghorbanpour;Pourjamshidian, Mahmoud;Arefi, Mohammad
    • Smart Structures and Systems
    • /
    • v.22 no.1
    • /
    • pp.105-120
    • /
    • 2018
  • In this paper, the nonlinear free and forced vibration responses of sandwich nano-beams with three various functionally graded (FG) patterns of reinforced carbon nanotubes (CNTs) face-sheets are investigated. The sandwich nano-beam is resting on nonlinear Visco-elastic foundation and is subjected to thermal and electrical loads. The nonlinear governing equations of motion are derived for an Euler-Bernoulli beam based on Hamilton principle and von Karman nonlinear relation. To analyze nonlinear vibration, Galerkin's decomposition technique is employed to convert the governing partial differential equation (PDE) to a nonlinear ordinary differential equation (ODE). Furthermore, the Multiple Times Scale (MTS) method is employed to find approximate solution for the nonlinear time, frequency and forced responses of the sandwich nano-beam. Comparison between results of this paper and previous published paper shows that our numerical results are in good agreement with literature. In addition, the nonlinear frequency, force response and nonlinear damping time response is carefully studied. The influences of important parameters such as nonlocal parameter, volume fraction of the CNTs, different patterns of CNTs, length scale parameter, Visco-Pasternak foundation parameter, applied voltage, longitudinal magnetic field and temperature change are investigated on the various responses. One can conclude that frequency of FG-AV pattern is greater than other used patterns.

Comprehensive study of internal modals interactions: Comparison of various axial nonlinear beam theories

  • Somaye Jamali Shakhlavi;Reza Nazemnezhad
    • Advances in nano research
    • /
    • v.16 no.3
    • /
    • pp.273-288
    • /
    • 2024
  • The geometrical nonlinear vibrations of the gold nanoscale rod are investigated for the first time by considering the internal modals interactions using different nonlinear beam theories. This phenomenon is usually one of the important features of nonlinear vibration systems. For a more detailed analysis, the von-Karman effects, preserving all the nonlinear terms in the strain-displacement relationships of gold nanoscale rods in three displacement directions, are considered to analyze the nonlinear axial vibrations of gold nanoscale rods. It uses highly accurate analytical-numerical solutions for the clamped-clamped and clamped-free boundary conditions of nanoscale gold rods. Also, with the help of Hamilton's principle, the governing equation and boundary conditions are derived based on Eringen's theory. The influence of nonlinear and nonlocal factors on axial vibrations was investigated separately for all three theories: Simple (ST), Rayleigh (RT) and Bishop (BT). Using different theories, the effects of inertia and shear on the internal resonances of gold nanorods were studied and compared in terms of twoto-one and three-to-one internal resonances. As the nonlocal parameter of the gold nanorod increases, the maximum nonlinear amplitude occurs. So, by adding nonlocal effects in a gold nanorod, the internal modal interactions resulting from the unique structure can be enhanced. It is worth noting that shear and inertial analysis have a significant effect on internal modal interactions in gold nanorods.

A nonlocal strain gradient theory for nonlinear free and forced vibration of embedded thick FG double layered nanoplates

  • Mahmoudpour, E.;Hosseini-Hashemi, SH.;Faghidian, S.A.
    • Structural Engineering and Mechanics
    • /
    • v.68 no.1
    • /
    • pp.103-119
    • /
    • 2018
  • In the present research, an attempt is made to obtain a semi analytical solution for both nonlinear natural frequency and forced vibration of embedded functionally graded double layered nanoplates with all edges simply supported based on nonlocal strain gradient elasticity theory. The interaction of van der Waals forces between adjacent layers is included. For modeling surrounding elastic medium, the nonlinear Winkler-Pasternak foundation model is employed. The governing partial differential equations have been derived based on the Mindlin plate theory utilizing the von Karman strain-displacement relations. Subsequently, using the Galerkin method, the governing equations sets are reduced to nonlinear ordinary differential equations. The semi analytical solution of the nonlinear natural frequencies using the homotopy analysis method and the exact solution of the nonlinear forced vibration through the Harmonic Balance method are then established. The results show that the length scale parameters give nonlinearity of the hardening type in frequency response curve and the increase in material length scale parameter causes to increase in maximum response amplitude, whereas the increase in nonlocal parameter causes to decrease in maximum response amplitude. Increasing the material length scale parameter increases the width of unstable region in the frequency response curve.

Application of FEM in nonlinear progressive failure of composite skew plates with practical non-uniform edge conditions

  • Dona Chatterjee;Arghya Ghosh;Dipankar Chakravorty
    • Structural Engineering and Mechanics
    • /
    • v.90 no.3
    • /
    • pp.287-299
    • /
    • 2024
  • Composite skew plates are aesthetically appealing light weight structural units finding wide applications in floors and roofs of commercial buildings. Although bending and vibration characteristics of these units have received attention from researchers but the domain of first and progressive failure has not been explored. Confident use of these plates necessitates comprehensive understanding of their failure behavior. With this objective, the present paper uses an eight noded isoparametric finite element together with von-Kármán's approach of nonlinear strains to study first ply and progressive failure up to ultimate damage of skew plates being subjected to uniform surface pressure. Parameters like skew angles, laminations and boundary conditions are varied and the results are practically analyzed. The novelty of the paper lies in the fact that the stiffness matrix of the damaged plate is calculated by considering material degradation locally only at failed points at each stage of first and progressive failure and as a result, the present outputs are so close to experimental findings. Interpretation of results from practical angles and proposing the relative performances of the different plate combinations in terms of ranks will be of much help to practicing engineers in selecting the best suited plate option among many combinations.