• Title/Summary/Keyword: Volumetric imaging

Search Result 131, Processing Time 0.019 seconds

Maxillary sinus volumetric changes in jet aircraft pilots: A multislice computed tomography pilot study

  • Yeda da Silva;Luciana Munhoz;Jose Rodrigues Parga Filho;Andreza Gomes Damasceno;Cesar Felipe Franca da Rosa;Eduardo Bilaqui Zukovski;Erik Zhu Teng;Claudio Campi de Castro
    • Imaging Science in Dentistry
    • /
    • v.53 no.1
    • /
    • pp.53-60
    • /
    • 2023
  • Purpose: This study evaluated maxillary sinus volume changes in military jet aircraft pilot candidates before and after the training program, in comparison with a control group, considering the effects of pressurization, altitude, and total flight hours, through multislice computed tomography. Materials and Methods: Fifteen fighter pilots were evaluated before initiating the training program and after the final approval. The control group consisted of 41 young adults who had not flown during their military career. The volumes of each maxillary sinus were measured individually before and at the end of the training program. Results: When comparing the initial and final volumes in the pilots, a statistically significant increase was observed both in the left and right maxillary sinuses. When evaluating the average total volume of the maxillary sinuses(i.e., the average volume of the right and left maxillary sinuses together), a significant increase in the volume of the maxillary sinuses was observed in the pilot group when compared to the control group. Conclusion: The maxillary sinus volumes in aircraft pilot candidates increased after the 8-month training program. This may be explained by changes in the gravitational force, the expansion of gas, and positive pressure from oxygen masks. This unprecedented investigation among pilots might lead to other investigations considering paranasal sinus alterations in this singular population.

Semiautomatic Three-Dimensional Threshold-Based Cardiac Computed Tomography Ventricular Volumetry in Repaired Tetralogy of Fallot: Comparison with Cardiac Magnetic Resonance Imaging

  • Hyun Woo Goo
    • Korean Journal of Radiology
    • /
    • v.20 no.1
    • /
    • pp.102-113
    • /
    • 2019
  • Objective: To assess the accuracy and potential bias of computed tomography (CT) ventricular volumetry using semiautomatic three-dimensional (3D) threshold-based segmentation in repaired tetralogy of Fallot, and to compare them to those of two-dimensional (2D) magnetic resonance imaging (MRI). Materials and Methods: This retrospective study evaluated 32 patients with repaired tetralogy of Fallot who had undergone both cardiac CT and MRI within 3 years. For ventricular volumetry, semiautomatic 3D threshold-based segmentation was used in CT, while a manual simplified contouring 2D method was used in MRI. The indexed ventricular volumes were compared between CT and MRI. The indexed ventricular stroke volumes were compared with the indexed arterial stroke volumes measured using phase-contrast MRI. The mean differences and degrees of agreement in the indexed ventricular and stroke volumes were evaluated using Bland-Altman analysis. Results: The indexed end-systolic (ES) volumes showed no significant difference between CT and MRI (p > 0.05), while the indexed end-diastolic (ED) volumes were significantly larger on CT than on MRI (93.6 ± 17.5 mL/m2 vs. 87.3 ± 15.5 mL/m2 for the left ventricle [p < 0.001] and 177.2 ± 39.5 mL/m2 vs. 161.7 ± 33.1 mL/m2 for the right ventricle [p < 0.001], respectively). The mean differences between CT and MRI were smaller for the indexed ES volumes (2.0-2.5 mL/m2) than for the indexed ED volumes (6.3-15.5 mL/m2). CT overestimated the stroke volumes by 14-16%. With phase-contrast MRI as a reference, CT (7.2-14.3 mL/m2) showed greater mean differences in the indexed stroke volumes than did MRI (0.8-3.3 mL/m2; p < 0.005). Conclusion: Compared to 2D MRI, CT ventricular volumetry using semiautomatic 3D threshold-based segmentation provides comparable ES volumes, but overestimates the ED and stroke volumes in patients with repaired tetralogy of Fallot.

Performance Measurement of Siemens Inveon PET Scanner for Small Animal Imaging (소동물 영상을 위한 Siemens Inveon PET 스캐너의 성능평가)

  • Yu, A-Ram;Kim, Jin-Su;Kim, Kyeong-Min;Lee, Young-Sub;Kim, Jong-Guk;Woo, Sang-Keun;Park, Ji-Ae;Kim, Hee-Joung;Cheon, Gi-Jeong
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.145-152
    • /
    • 2010
  • Inveon PET is a recently developed preclinical PET system for small animal. This study was conducted to measure the performance of Inveon PET as recommended by the NEMA NU 4-2008. We measured the spatial resolution, the sensitivity, the scatter fraction and the NECR using a F-18 source. A 3.432 ns coincidence window was used. A $1\;mm^3$ sized F-18 point source was used for the measurement of spatial resolution within an energy window of 350~625 keV. PET acquisition was performed to obtain the spatial resolution from the center to the 5 cm offset toward the edge of the transverse FOV. Sensitivity, scatter fraction, and NECR were measured within an energy window of 350~750 keV. For measuring the sensitivity, a F-18 line source (length: 12.7 cm) was used with concentric 5 aluminum tubes. For the acquisition of the scatter fraction and the NECR, two NEMA scatter phantoms (rat: 50 mm in diameter, 150 mm in length; mouse: 25 mm in diameter, 70 mm in length) were used and the data for 14 half-lives (25.6 hr) was obtained using the F-18 line source (rat: 316 MBq, mouse: 206 MBq). The spatial resolution of the F-18 point source was 1.53, 1.50 and 2.33 mm in the radial, tangential and axial directions, respectively. The volumetric resolution was $5.43\;mm^3$ in the center. The absolute sensitivity was 6.61%. The peak NECR was 486 kcps @121 MBq (rat phantom), and 1056 kcps @128 MBq (mouse phantom). The values of the scatter fraction were 20.59% and 7.93% in the rat and mouse phantoms, respectively. The performances of the Inveon animal PET scanner were measured in this study. This scanner will be useful for animal imaging.

Imaging Assessment of Visceral Pleural Surface Invasion by Lung Cancer: Comparison of CT and Contrast-Enhanced Radial T1-Weighted Gradient Echo 3-Tesla MRI

  • Yu Zhang;Woocheol Kwon;Ho Yun Lee;Sung Min Ko;Sang-Ha Kim;Won-Yeon Lee;Suk Joong Yong;Soon-Hee Jung;Chun Sung Byun;JunHyeok Lee;Honglei Yang;Junhee Han;Jeanne B. Ackman
    • Korean Journal of Radiology
    • /
    • v.22 no.5
    • /
    • pp.829-839
    • /
    • 2021
  • Objective: To compare the diagnostic performance of contrast-enhanced radial T1-weighted gradient-echo 3-tesla (3T) magnetic resonance imaging (MRI) and computed tomography (CT) for the detection of visceral pleural surface invasion (VPSI). Visceral pleural invasion by non-small-cell lung cancer (NSCLC) can be classified into two types: PL1 (without VPSI), invasion of the elastic layer of the visceral pleura without reaching the visceral pleural surface, and PL2 (with VPSI), full invasion of the visceral pleura. Materials and Methods: Thirty-three patients with pathologically confirmed VPSI by NSCLC were retrospectively reviewed. Multidetector CT and contrast-enhanced 3T MRI with a free-breathing radial three-dimensional fat-suppressed volumetric interpolated breath-hold examination (VIBE) pulse sequence were compared in terms of the length of contact, angle of mass margin, and arch distance-to-maximum tumor diameter ratio. Supplemental evaluation of the tumor-pleura interface (smooth versus irregular) could only be performed with MRI (not discernible on CT). Results: At the tumor-pleura interface, radial VIBE MRI revealed a smooth margin in 20 of 21 patients without VPSI and an irregular margin in 10 of 12 patients with VPSI, yielding an accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and F-score for VPSI detection of 91%, 83%, 95%, 91%, 91%, and 87%, respectively. The McNemar test and receiver operating characteristics curve analysis revealed no significant differences between the diagnostic accuracies of CT and MRI for evaluating the contact length, angle of mass margin, or arch distance-to-maximum tumor diameter ratio as predictors of VPSI. Conclusion: The diagnostic performance of contrast-enhanced radial T1-weighted gradient-echo 3T MRI and CT were equal in terms of the contact length, angle of mass margin, and arch distance-to-maximum tumor diameter ratio. The advantage of MRI is its clear depiction of the tumor-pleura interface margin, facilitating VPSI detection.

Real-Time 3D Ultrasound Imaging Method Using a Cross Array Based on Synthetic Aperture Focusing: I. Spherical Wave Transmission Approach (합성구경 기반의 교차어레이를 이용한 실시간 3차원 초음파 영상화 기법 : I. 구형파 송신 방법)

  • 김강식;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.391-401
    • /
    • 2004
  • 3D imaging systems using 2D phased arrays have a large number of active channels, compelling to use a very expensive and bulky beamforming hardware, and suffer from low volume rate because, in principle, at least one ultrasound transmit-receive event is necessary to construct each scanline. A high speed 3D imaging method using a cross array proposed previously to solve the above limitations can implement fast scanning and dynamic focusing in the lateral direction but suffer from low resolution except at the fixed transmit focusing along the elevational direction. To overcome these limitations, we propose a new real-time volumetric imaging method using a cross array based on the synthetic aperture technique. In the proposed method, ultrasound wave is transmitted successively using each elements of an 1D transmit array transducer, one at a time, which is placed along the elevational direction and for each firing, the returning pulse echoes are received using all elements of an 1D receive array transducer placed along the lateral direction. On receive, by employing the conventional dynamic focusing and synthetic aperture method along lateral and elevational directions, respectively, ultrasound waves can be focused effectively at all imaging points. In addition, in the proposed method, a volume of interest consisting of any required number of slice images, can be constructed with the same number of transmit-receive steps as the total number of transmit array elements. Computer simulation results show that the proposed method can provide the same and greatly improved resolutions in the lateral and elevational directions, respectively, compared with the 3D imaging method using a cross array based on the conventional fixed focusing. In the accompanying paper, we will also propose a new real-time 3D imaging method using a cross array for improving transmit power and elevational spatial resolution, which uses linear wave fronts on transmit.

Validation of Magnetic Resonance Velocimetry by Turbulent Pipe Flow (자기공명유속계를 이용한 난류 유동장 가시화)

  • Lee, Jeesoo;Song, Simon;Cho, Jee-Hyun
    • Journal of the Korean Society of Visualization
    • /
    • v.12 no.1
    • /
    • pp.35-42
    • /
    • 2014
  • Magnetic resonance velocimetry (MRV) is a versatile flow visualization technique using magnetic resonance imaging machine developed for the medical purpose. Recently, MRV is often utilized to analyze engineering flows due to its superior features of MRV such as capabilities of measuring flows with complicated, opaque flow geometry unlike optical techniques, 3-dimensional volumetric velocity vectors within a few hours, and etc. The purpose of this study was to validate the MRV data and evaluate the accuracy of the mean velocity profiles that we acquired for a turbulent flow in a circular pipe using a MR machine installed in Korea Basic Science Institute, Ochang, Korea. In addition, we briefly describe a procedure of parameter optimization for the operation of MRV. The results indicate that the MRV measurements provided well resolved mean velocity fields with a quite reasonable accuracy according to the inner and outer layer scaling laws of the turbulent pipe flows.

Preliminary Report of Three-Dimensional Reconstructive Intraoperative C-Arm in Percutaneous Vertebroplasty

  • Shin, Jae-Hyuk;Jeong, Je-Hoon
    • Journal of Korean Neurosurgical Society
    • /
    • v.51 no.2
    • /
    • pp.120-123
    • /
    • 2012
  • Objective : Percutaneous vertebroplasty (PVP) is usually carried out under three-dimensional (2D) fluoroscopic guidance. However, operative complications or bone cement distribution might be difficult to assess on the basis of only 2D radiographic projection images. We evaluated the feasibility of performing an intraoperative and postoperative examination in patients undergoing PVP by using three-dimensional (3D) reconstructive C-arm. Methods : Standard PVP procedures were performed on 14 consecutive patients by using a Siremobil Iso-$C^{3D}$ and a multidetector computed tomography machine. Post-processing of acquired volumetric datasets included multiplanar reconstruction (MPR) and surface shaded display (SSD). We analyzed intraoperative and immediate postoperative evaluation of the needle trajectory and bone cement distribution. Results : The male : female ratio was 2 : 12; mean age of patients, 70 (range, 77-54) years; and mean T score, -3.4. The mean operation time was 52.14 min, but the time required to perform and post-process the rotational acquisitions was 7.76 min. The detection of bone cement distribution and leakage after PVP by using MPR and SSD was possible in all patients. However, detection of the safe trajectory for needle insertion was not possible. Conclusion : 3D rotational image acquisition can enable intra- or post-procedural assessment of vertebroplasty procedures for the detection of bone cement distribution and leakage. However, it is difficult to assess the safe trajectory for needle insertion.

Design and Fabrication of 2D Array Ultrasonic Transducers with a Conductive Backer (전도성 후면층을 이용한 2D 배열 초음파 트랜스듀서의 설계 및 제작)

  • Woo, Jeongdong;Roh, Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.6
    • /
    • pp.502-508
    • /
    • 2013
  • In this paper, 2D array transducers using a conductive backer similar to 1-3 composites have been designed, fabricated, and evaluated. The conductive backer was based on well known manufacturing process of 1-3 composites with affordable ingredients. The 2D array transducer had 4,096 elements designed to have 3.5 MHz center frequency and a fractional bandwidth over 60 %. Fabricated prototype of the transducer satisfied the specifications in the center frequency and bandwidth. Performance over the entire elements was so uniform that the standard deviation was less than 0.81 dB. Thus applicability of the conductive backer proposed in this work to 2D array transducers was verified.

ROI Study for Diffusion Tensor Image with Partial Volume Effect (부분용적효과를 고려한 확산텐서영상에 대한 관심영역 분석 연구)

  • Choi, Woohyuk;Yoon, Uicheul
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.84-89
    • /
    • 2016
  • In this study, we proposed ameliorated method for region of interest (ROI) study to improve its accuracy using partial volume effect (PVE). PVE which arose in volumetric images when more than one tissue type occur in a voxel, could be used to reduce an amount of gray matter and cerebrospinal fluid within ROI of diffusion tensor image (DTI). In order to define ROIs, individual b0 image was spatially aligned to the JHU DTI-based atlas using linear and non-linear registration (http://cmrm.med.jhmi.edu/). Fractional anisotropy (FA) and mean diffusivity (MD) maps were estimated by fitting diffusion tensor model to each image voxel, and their mean values were computed within each ROI with PVE threshold. Participants of this study consisted of 20 healthy controls, 27 Alzheimer's disease and 27 normal-pressure hydrocephalus patients. The result showed that the mean FA and MD of each ROI were increased and decreased respectively, but standard deviation was significantly decreased when PVE was applied. In conclusion, the proposed method suggested that PVE was indispensable to improve an accuracy of DTI ROI study.

Air-coupled ultrasonic tomography of solids: 1 Fundamental development

  • Hall, Kerry S.;Popovics, John S.
    • Smart Structures and Systems
    • /
    • v.17 no.1
    • /
    • pp.17-29
    • /
    • 2016
  • Ultrasonic tomography is a powerful tool for identifying defects within an object or structure. But practical application of ultrasonic tomography to solids is often limited by time consuming transducer coupling. Air-coupled ultrasonic measurements may eliminate the coupling problem and allow for more rapid data collection and tomographic image construction. This research aims to integrate recent developments in air-coupled ultrasonic measurements with current tomography reconstruction routines to improve testing capability. The goal is to identify low velocity inclusions (air-filled voids and notches) within solids using constructed velocity images. Finite element analysis is used to simulate the experiment in order to determine efficient data collection schemes. Comparable air-coupled ultrasonic signals are then collected through homogeneous and isotropic solid (PVC polymer) samples. Volumetric (void) and planar (notch) inclusions within the samples are identified in the constructed velocity tomograms for a variety of transducer configurations. Although there is some distortion of the inclusions, the experimentally obtained tomograms accurately indicate their size and location. Reconstruction error values, defined as misidentification of the inclusion size and position, were in the range of 1.5-1.7%. Part 2 of this paper set will describe the application of this imaging technique to concrete that contains inclusions.