• Title/Summary/Keyword: Volumetric Ratio

Search Result 385, Processing Time 0.026 seconds

Icing Characteristics in Liquid-Phase Injection of LPG Fuel (액상분사식 LPG 인젝터의 아이싱 생성 특성 및 억제 방법)

  • Lee, Sun-Youp;Kim, Chang-Up;Choi, Kyo-Nam;Kang, Kern-Yong
    • Journal of ILASS-Korea
    • /
    • v.14 no.4
    • /
    • pp.147-152
    • /
    • 2009
  • Since a liquid-phase LPG injection system allows accurate control of fuel injection and increase in volumetric efficiency, it has advantages in achieving higher engine power and lower emissions compared to the mixer type LPG supplying system. However, this system also leads to an unexpected event called icing phenomenon which occurs when moisture in the air near the injector freezes and becomes frost around the nozzle hole due to extraction of heat from surrounding caused by instant fuel vaporization. As a result, it becomes difficult to control air/fuel ratio in engine operation, inducing exacerbation of engine performance and HC emission. One effort to mitigate icing phenomenon is to attach anti-icing injection tip in the end of nozzle. Therefore, in this study, the effect of engine operation parameters as well as surrounding conditions on icing phenomenon was investigated in a bench test rig with commercially-used anti-icing injection tips. The test results show that considerable ice was deposited on the surface near the nozzle hole of the anti-icing tip in low rpm and low load operating conditions in ambient air condition. This is because acceleration of detachment of deposited ice from the tip surface was induced in high load, high rpm conditions, resulting in decrease in frost accumulation. The results of the bench testing also demonstrate that little or no ice was formed at surrounding temperature below a freezing point since the absolute amount of moisture contained in the intake air is too small in such a low temperature.

  • PDF

Effects of Transverse Reinforcement on Flexural Strength and Ductility of High-Strength Concrete Columns (횡보강근에 따른 고강도 콘크리트 기둥의 휨강도와 연성)

  • 황선경;윤현도;정수영
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.365-372
    • /
    • 2002
  • This experimental investigation was conducted to examine the behavior of eight a third scale columns made of high-strength concrete(HSC). The columns were subjected to constant axial load corresponding to target value of 30 percent of the column axial load capacity and a cyclic horizontal load-inducing reversed bending moment. The variables studied in this research are the volumetric ratio of transverse reinforcement(Ps=1.58, 2.25 %), tie configuration(hoop-type, cross-type, diagonal-type) and tie yield strength(fy=5,600, 7,950 kgf/$\textrm{cm}^2$). Test results indicated that the flexural strength of all the columns did not exceed calculated flexural capacities based on the equivalent concrete stress block used in current design code. Columns with 42 percent higher amounts of transverse reinforcement than that required by seismic provisions of ACI 318-99 were shown ductile behavior. With axial load of 30 percent of the axial load capacity, the use of high-strength steel as transverse reinforcement may lead to equal or higher ductility than would be achieved with low-strength steel.

Developement of the reinforced acrylic-based hybrid denture composite resin with vinyloligosilsesquioxane (POSS)

  • Nam, Kwang-Woo;Chang, Myung-Woo;Chang, Bok-Sook;Han, Dong-Hoo;Shim, June-Sung;Chang, Ik-Tae;Heo, Seong-Joo;An, Jung-Ho;Chung, Dong-June
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.6
    • /
    • pp.782-790
    • /
    • 2000
  • The mainly used polymeric material for the denture is PMMA because of its cost and easiness to handle. So it was widely used material among dentists for past decades. But the acrylic-based denture materials have several common weak points such as shrinkage after curing and lack of strength. In order to solve these problems, we adapted one of hybrid system using acrylic polymer and vinyloligosilsesquioxane(POSS). POSS, which is a well known expandable monomer during polymerization process, may eventually suppress volumetric shrinkage. And the hybrid system makes it possible for the polymer to be stable in various severe conditions. Eight different kinds of samples were designed and synthesized. Each samples were characterized with dynamic mechanical analyser(DMA) to confirm their thermodynamic properties, fractured to analyze the cross-sectional morphology of the samples. And elongation, flexural and impact tests were also executed to evaluate the mechanical properties of the samples. From the results, hybrid composites had well defined crosslinked network structure compared to the widely used denture materials, and the mechanical strength improved without changing any surface condition as increment with POSS ratio in hybrid system. Fractured morphology showed homogeneous surfaces in spite of mutli component system, therefore we can conclude that the adoption of the POSS brought the reinforcement of the denture resin.

  • PDF

A Study on Stratified Charge GDI Engine Development - Combustion Analysis according to the Variations of Injection Pressure and Load - (연소실 직접분사식 성층급기 가솔린기관 개발에 관한 연구 - 연료분사압력과 부하변동에 따른 연소특성 해석 -)

  • Lee, Sang Man;Jeong, Young Sik;Chae, Jae Ou
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.9
    • /
    • pp.1317-1324
    • /
    • 1998
  • In general, DI gasoline engine has the advantages of higher power output, higher thermal efficiency, higher EGR tolerance and lower emissions due to the operation characteristics of increased volumetric efficiency, compression ratio and ultra-lean combustion scheme. In order to apply the concept of stratified charge into direct injection gasoline engine, some kinds of methodologies have been adapted in various papers. In this study, a reflector was adapted around the injector nozzle to apply the concept of stratified charge combustion which leads the air-fuel mixture to be rich near spark plug. Therefore, the mixture near the spark plug is locally rich to ignite while the lean mixture is wholly introduced into the combustion chamber. The characteristics of combustion is analyzed with the variations of fuel injection pressure and load in a stratified -charge direct injection single cylinder gasoline engine. The obtained results are summarized as follows ; 1. The MBT spark timing approached to TDC with the increase of load on account of the increase of evaporation energy, but has little relation with fuel injection pressure. 2. The stratification effects are apparent with the increase of injection pressure. It is considered by the development of secondary diffusive combustion and the increase of heat release of same region, but proceed rapidly than diesel engine. Especially, in the case of high pressure injection (l70bar) and high load (3.0kgf m), the diffusive combustion parts are developed excessively and results in the decrease of peak pressure than in the case of middle load. 3. The index of engine stability, COVimep value, is drastically decreased with the increase of load. 4. To get better performance of DI gasoline engine development, staged optimizaion must be needed such as injection pressure, reflector, intake swirl, injection timing, chamber shape, ignition system and so on. In this study, the I50bar injection pressure is appeared as the optimum.

The Effect of Fuel Injection Timing on Combustion and Power Characteristics in a DI CNG Engine (직분식 CNG 엔진에서 연료 분사시기의 변화가 연소 및 출력 특성에 미치는 영향)

  • Kang, Jeong-Ho;Yoon, Soo-Han;Lee, Joong-Soon;Park, Jong-Sang;Ha, Jong-Yul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.193-200
    • /
    • 2007
  • Natural gas is one of the most promising alternatives to gasoline and diesel fuels because of its lower harmful emissions, including $CO_2$, and high thermal efficiency. In particular, natural gas is seen as an alternative fuel for heavy-duty Diesel Engines because of the lower resulting emissions of PM, $CO_2$ and $NO_x$. Almost all CNG vehicles use the PFI-type Engine. However, PFI-type CNG Engines have a lower brake horse power, because of reduced volumetric efficiency and lower burning speed. This is a result of gaseous charge and the time losses increase as compared with the DI-type. This study was conducted to investigate the effect of injection conditions (early injection mode, late injection mode) on the combustion phenomena and performances in the or CNG Engine. A DI Diesel Engine with the same specifications used in a previous study was modified to a DI CNG Engine, and injection pressure was constantly kept at 60bar by a two-stage pressure-reducing type regulator. In this study, excess air ratios were varied from 1.0 to the lean limit, at the load conditions 50% throttle open rate and 1700rpm. The combustion characteristics of the or CNG Engine - such as in-cylinder pressure, indicated thermal efficiency, cycle-by-cycle variation, combustion duration and emissions - were investigated. Through this method, it was possible to verify that the combustion duration, the lean limit and the emissions were improved by control of injection timing and the stratified mixture conditions. And combustion duration is affected by not only excess air ratio, injection timing and position of piston but gas flow condition.

Influence of the Molar Ratio of Cl-total:Ti+4 on the Crystalline Structure in Preparation of TiO2 from Aqueous TiOCl2 Solution by Homogeneous Precipitation Method (균일침전법에 의한 이산화티타늄 제조공정에서 TiOCl2 수용액의 Cl-total:Ti+4의 몰 비율이 TiO2 결정구조에 미치는 영향)

  • Lee, Jeong Hoon;Yang, Yeong Seok
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.785-789
    • /
    • 2005
  • $TiO_2$ powders with rutile and brookite phases were synthesized through homogeneous precipitation of the aqueous $TiOCl_2$ solution, prepared from $TiCl_4$ and HCl solution, and their properties were characterized. Based on the analytical results appropriate molar ratios of ${Cl^-}_{total}:Ti^{+4}$ in precipitating solution for synthesis of pure rutile phase and a mixture of rutile and brookite phases were proposed. The volumetric proportion of brookite increased with increasing HCl concentration under a typical condition obtaining mixed phase of rutile and brookite. The brookite phase in the mixture was transformed to anatase phase by heat treatment at about $800^{\circ}C{\sim}850^{\circ}C$, and finally converted to rutile phase at $1000^{\circ}C$.

Effect of Die Geometry on Expansion of Corn Flour Extrudate (사출구 구조에 따른 옥수수가루 압출성형물의 팽화특성)

  • Gu, Bon-Jae;Ryu, Gi-Hyung
    • Food Engineering Progress
    • /
    • v.15 no.2
    • /
    • pp.148-154
    • /
    • 2011
  • The objective of this study was to determine the effect of die geometry on expansion index of extruded corn flour. Water solubility index, water absorption index and specific mechanical energy (SME) input were analyzed to observe the relationship with die geometry. The feed moisture content was 20 and 25%. Die dimensions were tapered angle (57, 95o) and length/diameter (L/D) ratio of die land (0.67, 1.67 and 2.67). The SME input was the highest at 20% moisture content and 2.23E-10 m3 die constant. The sectional and volumetric expansion indices at 20% moisture were increased with increase in die constant. However, die constant did not influence sectional expansion index of corn flour extrudate at 25% moisture content. The extruded corn flour at 25% moisture content had higher longitudinal expansion index than those of extruded corn flour at 20% moisture content. Sectional expansion and longitudinal expansion index were negatively correlated. The water absorption index and water solubility index were not affected with the die constant.

Assessment of compressive strength of cement mortar with glass powder from the early strength

  • Wang, Chien-Chih;Ho, Chun-Ling;Wang, Her-Yung;Tang, Chi
    • Computers and Concrete
    • /
    • v.24 no.2
    • /
    • pp.151-158
    • /
    • 2019
  • The sustainable development principle of replacing natural resources with renewable material is an important research topic. In this study, waste LCD (liquid crystal display) glass powder was used to replace cement (0%, 10%, 20% and 30%) through a volumetric method using three water-binder ratios (0.47, 0.59, and 0.71) to make cement mortar. The compressive strength was tested at the ages of 7, 28, 56 and 91 days. The test results show that the compressive strength increases with age but decreases as the water-binder ratio increases. The compressive strength slightly decreases with an increase in the replacement of LCD glass powder at a curing age of 7 days. However, at a curing age of 91 days, the compressive strength is slightly greater than that for the control group (glass powder is 0%). When the water-binder ratios are 0.47, 0.59 and 0.71, the compressive strength of the various replacements increases by 1.38-1.61 times, 1.56-1.80 times and 1.45-2.20 times, respectively, during the aging process from day 7 to day 91. Furthermore, a prediction model of the compressive strength of a cement mortar with waste LCD glass powder was deduced in this study. According to the comparison between the prediction analysis values and test results, the MAPE (mean absolute percentage error) values of the compressive strength are between 2.79% and 5.29%, and less than 10%. Thus, the analytical model established in this study has a good forecasting accuracy. Therefore, the proposed model can be used as a reliable tool for assessing the design strength of cement mortar from early age test results.

Effect of hydroxybutyric-acid on lipid bilayers with respect to layer phase

  • Lee, Gaeul;Park, Jin-Won
    • Journal of the Korean Applied Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.720-726
    • /
    • 2022
  • The behavior changes of the lipid bilayer, induced by the hydroxybutyric-acid incorporation, were investigated with respect to each phase of the layer using fluorescence intensity change. Spherical phospholipid bilayers, called vesicles, were prepared using an emulsion technique. Only in the aqueous inside of the vesicles was encapsulated 8-Aminonaphthalene-1,3,6-trisulfonic-acid-disodium-salt(ANTS). p-Xylene-bis-N-pyridinium-bromide(DPX) was included as a quencher only outside of the vesicles. The fluorescence scale was calibrated with the ANTS-encapsulated vesicles in DPX-dispersed-buffer taken as 100% and the mixture of ANTS and DPX in the buffer as 0%. Hydroxybutyric-acid addition into the vesicle solution led the change in the bilayer. The change was found to be related to the phase of each layer according to the ratio of hydroxybutyric-acid to lipid. These results seem to depend on the stability of the vesicles, due to the osmotic and volumetric effects on the arrangement in both head-group and tail-group.

A Novel, Deep Learning-Based, Automatic Photometric Analysis Software for Breast Aesthetic Scoring

  • Joseph Kyu-hyung Park;Seungchul Baek;Chan Yeong Heo;Jae Hoon Jeong;Yujin Myung
    • Archives of Plastic Surgery
    • /
    • v.51 no.1
    • /
    • pp.30-35
    • /
    • 2024
  • Background Breast aesthetics evaluation often relies on subjective assessments, leading to the need for objective, automated tools. We developed the Seoul Breast Esthetic Scoring Tool (S-BEST), a photometric analysis software that utilizes a DenseNet-264 deep learning model to automatically evaluate breast landmarks and asymmetry indices. Methods S-BEST was trained on a dataset of frontal breast photographs annotated with 30 specific landmarks, divided into an 80-20 training-validation split. The software requires the distances of sternal notch to nipple or nipple-to-nipple as input and performs image preprocessing steps, including ratio correction and 8-bit normalization. Breast asymmetry indices and centimeter-based measurements are provided as the output. The accuracy of S-BEST was validated using a paired t-test and Bland-Altman plots, comparing its measurements to those obtained from physical examinations of 100 females diagnosed with breast cancer. Results S-BEST demonstrated high accuracy in automatic landmark localization, with most distances showing no statistically significant difference compared with physical measurements. However, the nipple to inframammary fold distance showed a significant bias, with a coefficient of determination ranging from 0.3787 to 0.4234 for the left and right sides, respectively. Conclusion S-BEST provides a fast, reliable, and automated approach for breast aesthetic evaluation based on 2D frontal photographs. While limited by its inability to capture volumetric attributes or multiple viewpoints, it serves as an accessible tool for both clinical and research applications.