• Title/Summary/Keyword: Volume stability

Search Result 919, Processing Time 0.026 seconds

Emulsion stability of cosmetic creams based on water-in-oil high internal phase emulsions

  • Park, Chan-Ik;Cho, Wan-Gu;Lee, Seong-Jae
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.3
    • /
    • pp.125-130
    • /
    • 2003
  • The emulsion stability of cosmetic creams based on the water-in-oil (W/O) high internal phase emulsions (HIPEs) containing water, squalane oil and cetyl dimethicone copolyol was investigated with various compositional changes, such as electrolyte concentration, oil polarity and water phase volume fraction. The rheological consistency was mainly destroyed by the coalescence of the deformed water droplets. The slope change of complex modulus versus water phase volume fraction monitored in the linear viscoelastic region could be explained with the resistance to coalescence of the deformed interfacial film of water droplets in concentrated W/O emulsions: the greater the increase of complex modulus was, the more the coalescence occurred and the less consistent the emulsions were. Emulsion stability was dependent on the addition of electrolyte to the water phase. Increasing the electrolyte concentration increased the refractive index of the water phase, and thus decreased the refractive index difference between oil and water phases. This decreased the attractive force between water droplets, which resulted in reducing the coalescence of droplets and increasing the stability of emulsions. Increasing the oil polarity tended to increase emulsion consistency, but did not show clear difference in cream hardness among the emulsions.

Austenite Stability of Sintered Fe-based Alloy (철계 소결합금의 오스테나이트 안정성)

  • Choi, Seunggyu;Seo, Namhyuk;Jun, Junhyub;Son, Seung Bae;Lee, Seok-Jae
    • Journal of Powder Materials
    • /
    • v.27 no.5
    • /
    • pp.414-419
    • /
    • 2020
  • In the present study, we investigated the austenite stability of a sintered Fe-based nanocrystalline alloy. The volume fraction of austenite was measured based on the X-ray diffraction data of sintered Fe-based nanocrystalline alloys, which were prepared by high-energy ball milling and spark plasma sintering. The sintered alloy samples showed a higher volume fraction of austenite at room temperature as compared to the equilibrium volume fraction of austenite obtained using thermodynamic calculations, which resulted from the nanosized crystalline structure of the sintered alloy. It was proved that the austenite stability of the sintered Fe-based alloy increased with a rise in the amount of austenite stabilizing elements such as Mn, Ni, and C; however, it increased more effectively with a decrease in the actual grain size. Furthermore, we proposed a new equation to predict the martensite starting temperature for sintered Fe-based alloys.

STABILIZED-PENALIZED COLLOCATED FINITE VOLUME SCHEME FOR INCOMPRESSIBLE BIOFLUID FLOWS

  • Kechkar, Nasserdine;Louaar, Mohammed
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.519-548
    • /
    • 2022
  • In this paper, a stabilized-penalized collocated finite volume (SPCFV) scheme is developed and studied for the stationary generalized Navier-Stokes equations with mixed Dirichlet-traction boundary conditions modelling an incompressible biological fluid flow. This method is based on the lowest order approximation (piecewise constants) for both velocity and pressure unknowns. The stabilization-penalization is performed by adding discrete pressure terms to the approximate formulation. These simultaneously involve discrete jump pressures through the interior volume-boundaries and discrete pressures of volumes on the domain boundary. Stability, existence and uniqueness of discrete solutions are established. Moreover, a convergence analysis of the nonlinear solver is also provided. Numerical results from model tests are performed to demonstrate the stability, optimal convergence in the usual L2 and discrete H1 norms as well as robustness of the proposed scheme with respect to the choice of the given traction vector.

EFFECT OF COMPOSITION ON STRAIN-INDUCED MARTENSITE TRANSFORMATION OF FeMnNiC ALLOYS FABRICATED BY POWDER METALLURGY

  • SEUNGGYU CHOI;JUNHYUB JEON;NAMHYUK SEO;YOUNG HOON MOON;IN-JIN SHON;SEOK-JAE LEE
    • Archives of Metallurgy and Materials
    • /
    • v.65 no.3
    • /
    • pp.1001-1004
    • /
    • 2020
  • We investigated the austenite stability and mechanical properties in FeMnNiC alloy fabricated by spark plasma sintering. The addition of Mn, Ni, and C, which are known austenite stabilizing elements, increases its stability to a stable phase existing above 910℃ in pure iron; as a result, austenitic microstructure can be observed at room temperature, depending on the amounts of Mn, Ni, and C added. Depending on austenite stability and the volume fraction of austenite at a given temperature, strain-induced martensite transformation during plastic deformation may occur. Both stability and the volume fraction of austenite can be controlled by several factors, including chemical composition, grain size, dislocation density, and so on. The present study investigated the effect of carbon addition on austenite stability in FeMnNi alloys containing different Mn and Ni contents. Microstructural features and mechanical properties were analyzed with regard to austenite stability.

Strain gradient based static stability analysis of composite crystalline shell structures having porosities

  • Fenjan, Raad M.;Faleh, Nadhim M.;Ridha, Ahmed A.
    • Steel and Composite Structures
    • /
    • v.36 no.6
    • /
    • pp.631-642
    • /
    • 2020
  • This paper studies nonlinear stability behavior of a nanocrystalline silicon curved nanoshell considering strain gradient size-dependency. Nanocrystallines are composite materials with an interface phase and randomly distributed nano-size grains and pores. Imperfectness of the curved nanoshell has been defined based on an initial deflection. The formulation of nanocrystalline nanoshell has been established by thin shell theory and an analytical approach has been used in order to solve the buckling problem. For accurately describing the size effects related to nano-grains or nano-pores, their surface energies have been included. Nonlinear stability curves of the nanoshell are affected by the size of nano-grain, curvature radius and nano-pore volume fraction. It is found that increasing the nano-pore volume fraction results in lower buckling loads.

Analysis on underwater stability of the octagonal pillar type fish cage and mooring system (팔각기둥형 가두리 시스템의 수중 안정성 분석)

  • Yang, Yong-Su;Park, Seong-Wook;Lee, Kyounghoon;Lee, Dong-Gil;Jeong, Seong-Jae;Bae, Jaehyun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.2
    • /
    • pp.193-201
    • /
    • 2014
  • The sea cage in marine aquaculture might be varied such as on the stability and shape in the open sea by environmental factors. To evaluate the stability of net cage structures in the open sea, the physical and numerical modeling techniques were applied and compared with field observations. This study was carried out to analyse the stability and the volume loss which would have an effect on the fish swimming behavior in the octagonal pillar type fish cage under the open sea. As a results, the volume loss ratio of the fish cage as measured using a depth sensor was indicated a value of the 30.3% under the current velocity (1.1m/s). The fish cage should be consisted of a concrete block with a weight over 10 tons, a mooring rope diameter over 28mm PP, and a shackle of 25mm under the current speed of 1m/sec for reasonable stability.

A STABILIZED CHARACTERISTIC FINITE VOLUME METHOD FOR TRANSIENT NAVIER-STOKES EQUATIONS

  • Zhang, Tong
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1205-1219
    • /
    • 2011
  • In this work, a stabilized characteristic finite volume method for the time-dependent Navier-Stokes equations is investigated based on the lowest equal-order finite element pair. The temporal differentiation and advection term are dealt with by characteristic scheme. Stability of the numerical solution is derived under some regularity assumptions. Optimal error estimates of the velocity and pressure are obtained by using the relationship between the finite volume and finite element methods.

COMPUTATION OF TURBULENT NATURAL CONVECTION IN A RECTANGULAR CAVITY WITH THE FINITE-VOLUME BASED LATTICE BOLTZMANN METHOD (유한체적법을 기초한 레티스 볼쯔만 방법을 사용하여 직사각형 공동에서의 난류 자연대류 해석)

  • Choi, Seok-Ki;Kim, Seong-O
    • Journal of computational fluids engineering
    • /
    • v.16 no.4
    • /
    • pp.39-46
    • /
    • 2011
  • A numerical study of a turbulent natural convection in an enclosure with the lattice Boltzmann method (LBM) is presented. The primary emphasis of the present study is placed on investigation of accuracy and numerical stability of the LBM for the turbulent natural convection flow. A HYBRID method in which the thermal equation is solved by the conventional Reynolds averaged Navier-Stokes equation method while the conservation of mass and momentum equations are resolved by the LBM is employed in the present study. The elliptic-relaxation model is employed for the turbulence model and the turbulent heat fluxes are treated by the algebraic flux model. All the governing equations are discretized on a cell-centered, non-uniform grid using the finite-volume method. The convection terms are treated by a second-order central-difference scheme with the deferred correction way to ensure accuracy and stability of solutions. The present LBM is applied to the prediction of a turbulent natural convection in a rectangular cavity and the computed results are compared with the experimental data commonly used for the validation of turbulence models and those by the conventional finite-volume method. It is shown that the LBM with the present HYBRID thermal model predicts the mean velocity components and turbulent quantities which are as good as those by the conventional finite-volume method. It is also found that the accuracy and stability of the solution is significantly affected by the treatment of the convection term, especially near the wall.

Long Term Stability of Slopes Excavated in Weathered Granite Rock Masses Subjected to Extreme Climatic Conditions (극한 기후 조건하에서 풍화된 화강암반 절취사면에 대한 장기적 안정성 연구)

  • Yang, Kwang-Yong;Park, Yeon-Jun;You, Kwang-Ho;Woo, Ik;Park, Chan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.655-662
    • /
    • 2003
  • Slope stability is an important issue ill civil engineering works or in open pit mines where both economy and efficiency is required. These are the long-term stability problems which depend on the change of physical properties under a certain weather condition. These can also result in progress of weathering which can change mechanical or hydro-geological properties of rock mass considerably. In this study, weathering in nature was simulated by freeze-thaw test and Soxhlet test which represent mechanical and chemical weathering respectively. Measured were elastic wave velocities, absorption rate, volume change. Uniaxial compression strengths before and after the weathering tests were also measured. The change in weight and volume of the specimens were not clearly related to the weathering process, but P, S wave velocities were clearly decreased as weathering progresses. For some class of rocks, P-wave velocity was increased probably because of the saturation due to improved connectivity of the pre-existing pores. Based on the test results, stability of the slopes were analyzed using FLAC$\^$2D/. Due to the reduced strength parameters, the factors of safety were decreased for the selected sites.

  • PDF