• Title/Summary/Keyword: Volume source

Search Result 997, Processing Time 0.024 seconds

Injection volume control of carboxy-gun using a solenoid valve (솔레노이드 밸브를 이용한 카복시 건의 주입량 제어)

  • Tak, Tae-Oh;Han, Nam-Gyu;Shin, Young-Kyu
    • Journal of Industrial Technology
    • /
    • v.32 no.A
    • /
    • pp.65-70
    • /
    • 2012
  • Carboxy-guns are used for rapid and precise injection of $CO_2$ gas to the target skin area using external power source. In the design of carboxy-gun, the most important thing is how to precisely control injection volume of $CO_2$ gas. This paper deals with the control scheme of injection volume of carboxy-gun using solenoid valve. First the amount of volume that passes through the solenoid valve under on-off time ratio control is estimated based on the assumption of compressible gas flow. The flow rate of gas is experimentally measured under the varying pressure of the gas reservoir. Two results showed good correlation to each other, thus demonstrating the validity of the volume control strategy.

  • PDF

Water Quality Characteristics of Nonpoint Pollutants based on the Road Type (도로 유형별 비점오염원의 수질특성)

  • Jang, Dae-Chang;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.631-636
    • /
    • 2009
  • This study has its intention to investigate the water quality of non-point source which is runoff from roads. We have classified and selected twelve sites as city road, industrial road, national road and mountain road by considering their traffic volume and surroundings. Water quality was analyzed based on BOD, COD, SS, T-N and T-P and the concentrations were measured by sampling after rainfall with the interval of 10 minutes, 20 minutes, and 30 minutes. BOD was the highest in city road with 57.6 mg/L and the lowest in mountain road with 45.0 mg/L. For COD, the highest concentration in industrial road was 146.5 mg/L and the lowest was in mountain road with 98.0 mg/L. The run off concentration of SS was up to maximum 630.0 mg/L (average 280.4 mg/L) which was remarkable compared to other types of road. It showed its lowest concentration in national road with 76.0 mg/L. T-N and T-P were the highest in industrial road and the lowest in mountain road. We found out that the runoff concentration was high with large amount of traffic volume and it seemed to be high in city road and industrial road where they were largely affected by their surroundings. Relatively, national road and mountain road seemed to show low concentration as they have less traffic volume and less affected by their surroundings.

Experimental study on hydrogen behavior and possible risk with different injection conditions in local compartment

  • Liu, Hanchen;Tong, Lili;Cao, Xuewu
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1650-1660
    • /
    • 2020
  • Comparing with the large containment, the gas can not flow freely within the local compartment due to the small volume of the compartment in case of serious accident, which affects the hydrogen flow distribution, and it will determines the location where high concentration occurs in compartment. In this paper, hydrogen distribution and possible hydrogen risk in the vessel under the different conditions are investigated. The results show that when the initial gas momentum is increased, the ability of gas enters into the upper region of the vessel will be strengthened, and the hydrogen volume fraction in the upper region of the vessel is higher. Comparing with horizontal source direction, when source direction is vertically towards upper space, hydrogen is more likely to accumulate in the upper region of the vessel. With the increasing of steam mass flow, the dilution effect of steam on the hydrogen volume fraction will be strengthened, while the pressure in the vessel is also increased. When steam flow is decreased, the hydrogen explosion risk is higher in the vessel. The experiment data can provide technical support for the validation of the CFD software and the mitigation of hydrogen risk in the containment compartment.

Simulation of Solar and Ambient-air-assisted Heat Pump (태양열 및 외기 열원식 히트펌프 시스템 시뮬레이션)

  • Baeck, N.C.;Park, J.U.;Song, B.H.;Lee, J.K.;Kim, H.J.
    • Solar Energy
    • /
    • v.20 no.4
    • /
    • pp.17-24
    • /
    • 2000
  • Thermal performance of a SAAHPS (Solar and Ambient-air-assisted Heat Pump System) located in KIER is simulated with TRNSYS 14.2. The SAAHPS is composed of dual evaorators, each of which is used as a solar fluid heat source and an air fluid heat source. Polynomial coefficients data for the SAAHPS is supplied with Frigosoft, a program widely used for heat pump modeling. In general, collector area and storage volume are 2 key parameters in SAAHPS thermal performance. A parametric study is performed in this study to assess sensitivity of collector area and storage volume in SAAHPS. We concluded that firstly collector area and storage volume are the primary variables in SAAHPS thermal performance, secondly COP of SAAHPS is higher than that of conventional heat pumps. Therefore. collector efficiency can be enhanced swith SAAHPS during a heating season.

  • PDF

The Effects of an Additive on the Thermal Properties of a Clathrate Compound (III) - The Case of TMA Clathrate Compound with Acetone - (포접화합물의 열물성에 미치는 첨가제의 효과 (III) - TMA 물계 포접화합물에 Acetone을 첨가한 경우 -)

  • Kim Jin Heung;Chung Nak Kyu;Kim Suk Hyun;Kim Chang Oh;Kang Seung Hyeon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1183-1189
    • /
    • 2004
  • An experimental investigation is conducted to measure phase change temperature and supercooling when acetone is added to TMA 30 wt% clathrate during cooling process in heat source. Also rate of volume change is investigated when acetone is added to TMA 30 wt% clathrate during the cooling process in heat source -8$^{\circ}C$. The results show that phase change temperature is about 4.5~5.5$^{\circ}C$ when acetone is added to TMA 30 wt% clathrate during the cooling process for heat sink temperature of -6, -7$^{\circ}C$ and -8$^{\circ}C$. Supercooling is repressed about 2~1$0^{\circ}C$ when 0.08 wt% acetone is added to it and rate of volume change is decreased about 2.9% when 0.1 wt% acetone is added for the heat sink temperature of -8$^{\circ}C$.

An enhanced incompressible SPH method for simulation of fluid flow interactions with saturated/unsaturated porous media of variable porosity

  • Shimizu, Yuma;Khayyer, Abbas;Gotoh, Hitoshi
    • Ocean Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.63-86
    • /
    • 2022
  • A refined projection-based purely Lagrangian meshfree method is presented towards reliable numerical analysis of fluid flow interactions with saturated/unsaturated porous media of uniform/spatially-varying porosities. The governing equations are reformulated on the basis of two-phase mixture theory with incorporation of volume fraction. These principal equations of mixture are discretized in the context of Incompressible SPH (Smoothed Particle Hydrodynamics) method. Associated with the consideration of governing equations of mixture, a new term arises in the source term of PPE (Poisson Pressure Equation), resulting in modified source term. The linear and nonlinear force terms are included in momentum equation to represent the resistance from porous media. Volume increase of fluid particles are taken into consideration on account of the presence of porous media, and hence multi-resolution ISPH framework is also incorporated. The stability and accuracy of the proposed method are thoroughly examined by reproducing several numerical examples including the interactions between fluid flow and saturated/unsaturated porous media of uniform/spatially-varying porosities. The method shows continuous pressure field, smooth variations of particle volumes and regular distributions of particles at the interface between fluid and porous media.

Numerical Analysis on Cooling Characteristics of Electronic Components Using Convection and Conduction Heat Transfer (대류와 전도 열전달을 이용한 전자부품의 냉각특성 수치해석)

  • Son, Young-Seok;Shin, Jee-Young
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.390-395
    • /
    • 2001
  • Cooling characteristics using convection and conduction heat transfer in a parallel channel with extruding heat sources are studied numerically. A two-dimensional model has been developed for numerical prediction of transient, compressible, viscous, laminar flow, and conjugate heat transfer between parallel plates with uniform block heat sources. The finite volume method is used to solve this problem. The considered assembly consists of two channels formed by two covers and one PCB which has three uniform heat source blocks. Five different cooling methods are considered to find efficient cooling method in a given geometry and heat source. The velocity and temperature fields, local temperature distribution along surface of blocks, and the maximum temperature in each block are obtained.

  • PDF

Effects of Environmental and Nutritional Conditions on Fibrinolytic enzyme Production from Bacillus subtilis BK-17 in Flask Culture (플라스크 배양에서 Bacillus subtilis BK-17의 혈전용해효소 생산에 대한 환경 및 영양 조건의 영향)

  • 최원아;이진욱;이경희;박성훈
    • KSBB Journal
    • /
    • v.13 no.5
    • /
    • pp.491-496
    • /
    • 1998
  • The production of fibrinolytic enzyme from Bacillus subtilis BK-17 was studied in the shake flask cultures. The important medium components studied include nitrogen source, carbon source and inorganic salts. The environmental conditions include initial pH, temperature, shaking speed and working volume. Among various N-sources, C-sources and inorganic salts tested, soybean flour, D-glucose and Na2HPO4 gave the best results, and their optimal concentrations were 1.5%, 0.5% and 0.05%, respectively. The optimal pH and temperature were 9.0 and 37$^{\circ}C$. With decreasing working volume in the range of 25∼100ml in the 250ml flask or increasing shaking speed in the range of 100∼300rpm, the enzyme production was greatly enhanced. The enzyme activity under the optimal conditions was about 1400I.U./ml with urokinase as a standard.

  • PDF

Study on Utilizing Resources in Environment-friendly City - Operation method of rain storage tank for using rainwater as multipurpose - (친환경 도시에서의 자원활용에 관한 연구 -빗물의 다목적 활용을 위한 빗물저장조의 운전방법 -)

  • 정용현
    • Journal of Environmental Science International
    • /
    • v.12 no.3
    • /
    • pp.359-366
    • /
    • 2003
  • Ecological society and energy conservative systems has become a subject of world wide attention. To examine the technologies of such systems as resource recycling society, this study is proposed for using rainwater as energy source and water resources in urban area. Useful informations for planning of utilizing rainfall as energy source, water resources, emergency water and controlling flood are discussed with model systems in urban area. It is calculated that the rate of utilizing rainwater, amounts of utilizing rainwater, substitution rate of supply water, amounts of overflow rainwater according to rain storage tank volume. By applying the past weather data, The optimum volume of rain water storage was calculated as 200m$^3$ which mean no benefits according to the increase of storage tank volumes. For optimum planing and control method at the model system, several running method of rainwater storage tank was calculated. The optimum operating method was the using weather data as 3hours weather forecast.

A NUMERICAL STUDY ON MHD NATURAL CONVECTIVE HEAT TRANSFER IN AN AG-WATER NANOFLUID FILLED ENCLOSURE WITH CENTER HEATER

  • NITHYADEVI, N.;MAHALAKSHMI, T.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.21 no.4
    • /
    • pp.225-244
    • /
    • 2017
  • The natural convective nanofluid flow and heat transfer inside a square enclosure with a center heater in the presence of magnetic field has been studied numerically. The vertical walls of the enclosure are cold and the top wall is adiabatic while the bottom wall is considered with constant heat source. The governing differential equations are solved by using a finite volume method based on SIMPLE algorithm. The parametric study is performed to analyze the effect of different lengths of center heater, Hartmann numbers and Rayleigh numbers. The heater effectiveness and temperature distribution are examined. The effect of all pertinent parameters on streamlines, isotherms, velocity profiles and average Nusselt numbers are presented. It is found that heat transfer increases with the increase of heater length, whereas it decreases with the increase of magnetic field effect. Furthermore, it is found that the value of Nusselt number depends strongly upon the Hartmann number for the increasing values of Rayleigh number.