• Title/Summary/Keyword: Volume reduction

Search Result 1,771, Processing Time 0.026 seconds

The Effect of Heat Treatment on the Tensile Properties of TiNi/6061Al Composites (TiNi/6061Al 복합재료의 인장특성에 미치는 열처리의 영향)

  • Park, Sung-Ki;Shin, Soon-Gi;Lee, Jun-Hee
    • Korean Journal of Materials Research
    • /
    • v.13 no.1
    • /
    • pp.64-68
    • /
    • 2003
  • The 1.6 vol% and 2.5 vol% TiNi/6061Al composites were fabricated by permanent mold casting for investigating the effect of heat treatment on tensile strength for composites. The tensile strength without T6 treatment at 293 K was increased with increasing the volume fraction of TiNi fiber and at 363 K the higher the pre-strain, the higher the tensile strength. The tensile strength of the composite with $T_{6}$ treatment at 293 K was found to increase with increasing both the amount of pre-strain and the volume fraction of TiNi fiber and was higher than that without $T_{6}$ treatment. It should be noted that the tensile strength 2.5vol%TiNi/6061Al composites rolled at a 38% reduction ratio was the maximum value of 298 MPa. The tensile strength of composites decreased with increasing the reduction ratio over 38% because of the rupture of TiNi fiber.

Experimental Study on Rainfall Runoff Reduction Effects by Permeable Polymer Block Pavement (투수성 폴리머 블록 포장에 의한 우수 유출 저감 효과에 관한 실험적 연구)

  • Sung, Chan-Yong;Kim, Young-Ik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.157-166
    • /
    • 2012
  • Most of the roads are paved with impermeable materials such as asphalt concrete and cement concrete, and in the event of heavy rainfall, rainwater directly flows into river through a drainage hole on the pavement surface. This large quantity of rainwater directly spilled into the river frequently leads to the flooding of urban streams, damaging lowlands and the lower reaches of a river. In recent years there has been a great deal of ongoing research concerning water permeability and drainage in pavements. Accordingly, in this research, a porous polymer concrete was developed for permeable pavement by using unsaturated polyester resin as a binder, recycled aggregate as coarse aggregate, fly ash and blast furnace slag as filler, and its physical and mechanical properties were investigated. Also, 3 types of permeable polymer block by optimum mix design were developed and rainfall runoff reduction effects by permeability pavement using permeable polymer block were analyzed based on hydraulic experimental model. The infiltration volume, infiltration ratio, runoff initial time and runoff volume in permeability pavement with permeable polymer block of $300{\times}300{\times}80$ mm were evaluated for 50, 100 and 200mm/hr rainfall intensity.