• Title/Summary/Keyword: Volume of pyramid

Search Result 30, Processing Time 0.028 seconds

Simulating three dimensional wave run-up over breakwaters covered by antifer units

  • Najafi-Jilani, A.;Niri, M. Zakiri;Naderi, Nader
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.297-306
    • /
    • 2014
  • The paper presents the numerical analysis of wave run-up over rubble-mound breakwaters covered by antifer units using a technique integrating Computer-Aided Design (CAD) and Computational Fluid Dynamics (CFD) software. Direct application of Navier-Stokes equations within armour blocks, is used to provide a more reliable approach to simulate wave run-up over breakwaters. A well-tested Reynolds-averaged Navier-Stokes (RANS) Volume of Fluid (VOF) code (Flow-3D) was adopted for CFD computations. The computed results were compared with experimental data to check the validity of the model. Numerical results showed that the direct three dimensional (3D) simulation method can deliver accurate results for wave run-up over rubble mound breakwaters. The results showed that the placement pattern of antifer units had a great impact on values of wave run-up so that by changing the placement pattern from regular to double pyramid can reduce the wave run-up by approximately 30%. Analysis was done to investigate the influences of surface roughness, energy dissipation in the pores of the armour layer and reduced wave run-up due to inflow into the armour and stone layer.

Verification of Gated Radiation Therapy: Dosimetric Impact of Residual Motion (여닫이형 방사선 치료의 검증: 잔여 움직임의 선량적 영향)

  • Yeo, Inhwan;Jung, Jae Won
    • Progress in Medical Physics
    • /
    • v.25 no.3
    • /
    • pp.128-138
    • /
    • 2014
  • In gated radiation therapy (gRT), due to residual motion, beam delivery is intended to irradiate not only the true extent of disease, but also neighboring normal tissues. It is desired that the delivery covers the true extent (i.e. clinical target volume or CTV) as a minimum, although target moves under dose delivery. The objectives of our study are to validate if the intended dose is surely delivered to the true target in gRT and to quantitatively understand the trend of dose delivery on it and neighboring normal tissues when gating window (GW), motion amplitude (MA), and CTV size changes. To fulfill the objectives, experimental and computational studies have been designed and performed. A custom-made phantom with rectangle- and pyramid-shaped targets (CTVs) on a moving platform was scanned for four-dimensional imaging. Various GWs were selected and image integration was performed to generate targets (internal target volume or ITV) for planning that included the CTVs and internal margins (IM). The planning was done conventionally for the rectangle target and IMRT optimization was done for the pyramid target. Dose evaluation was then performed on a diode array aligned perpendicularly to the gated beams through measurements and computational modeling of dose delivery under motion. This study has quantitatively demonstrated and analytically interpreted the impact of residual motion including penumbral broadening for both targets, perturbed but secured dose coverage on the CTV, and significant doses delivered in the neighboring normal tissues. Dose volume histogram analyses also demonstrated and interpreted the trend of dose coverage: for ITV, it increased as GW or MA decreased or CTV size increased; for IM, it increased as GW or MA decreased; for the neighboring normal tissue, opposite trend to that of IM was observed. This study has provided a clear understanding on the impact of the residual motion and proved that if breathing is reproducible gRT is secure despite discontinuous delivery and target motion. The procedures and computational model can be used for commissioning, routine quality assurance, and patient-specific validation of gRT. More work needs to be done for patient-specific dose reconstruction on CT images.

3D Physical User Interface System using a Dominant Eye and an Index Fingertip (주시안과 검지 끝 점을 이용한 3차원 물리 사용자 인터페이스 시스템)

  • Kim, Kyung-Ho;Ahn, Jeeyun;Lee, Jongbae;Kwon, Heeyong
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.2
    • /
    • pp.138-146
    • /
    • 2013
  • In this paper, we propose a new 3D PUI(Physical User Interface) system in which the index fingertip points and moves a mouse position on a given monitor screen. There are two 3D PUI schemes to control smart devices like smart TVs remotely, the relative pointing one and the absolute pointing one. The former has a problem in that it does not match the human perception process, and the latter requires excessive movement of the body. We combined the relative one and the absolute one, and develop a new intuitive and user-friendly pointing method, 3D PUI. It requires an establishment of a pyramid shape visible area (view volume) to point a mouse position on a screen with the dominant eye. In order to maintain the real-time view volume, however, it requires large computation depending on the movement of the dominant eye. We optimized the computation of the view volume in which it determines the internal and external position on the screen. In addition, Kalman filter is applied with tracing of the mouse pointer position to stabilize the trembling of the pointer and offers the user ease of use.

The Usability Assessment of Self-developed Phantom for Evaluating Automatic Exposure Control System Using Three-Dimensions Printing (자동노출제어장치 평가를 위한 3D 프린팅 기반의 자체 제작 팬텀의 유용성 평가)

  • Lee, Ki-Baek;Nam, Ki-Chang;Kim, Ho-Chul
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.4
    • /
    • pp.147-153
    • /
    • 2020
  • This study was to evaluate the usability of self-developed phantom for evaluating automatic exposure control (AEC) using three-dimensions (3D) printer. 3D printer of fused deposition modeling (FDM) type was utilized to make the self-developed AEC phantom and image acquisitions were conducted by two different type of scanners. The self-developed AEC phantom consisted of four different size of portions. As a result, two types of phantom (pyramid and pentagon shape) were created according to the combination of the layers. For evaluating the radiation dose with the two types of phantom, the values of tube current, computed tomography dose index volume (CTDIvol), and dose length product (DLP) were compared. As a result, it was confirmed that the values of tube current were properly reflected according to the thickness, and the CTDIvol and DLP were not significantly changed regardless of AEC functions of different scanners. In conclusion, the self-developed phantom by using 3D printer could assess whether the AEC function works well. So, we confirmed the possibility that a self-made phantom could replace the commercially expensive AEC performance evaluation phantom.

An Analysis on the Concept and Measuring Activities of the Height of Figures in Elementary School Mathematics Textbooks2 (초등학교 수학 교과서에 서술된 높이 개념과 측정 활동 분석)

  • Paek, Dae Hyun
    • Education of Primary School Mathematics
    • /
    • v.19 no.2
    • /
    • pp.113-125
    • /
    • 2016
  • The concept and measuring activities of the height of figures are essential to find the areas or volumes of the corresponding figures. For plane figures, the height of a triangle is defined to be the line segment from a vertex that is perpendicular to the opposite side of the triangle, whereas the height of a parallelogram(trapezoid) is defined to be the distance between two parallel sides. For the solid figures, the height of a prism is defined to be the distance of two parallel bases, whereas the height of a pyramid is defined to be the perpendicular distance from the apex to the base. In addition, the height of a cone is defined to be the length of the line segment from the apex that is perpendicular to the base and the height of a cylinder is defined to be the length of the line segment that is perpendicular to two parallel bases. In this study, we discuss some pedagogical problems on the concepts and measuring activities of the height of figures to provide alternative activities and suggest their educational implications from a teaching and learning point of view.

Analysis of Hyaluronic Acid Microneedle Characteristics as Its Shapes (히알루론산 마이크로니들 형태에 따른 특성 분석)

  • Ryu, Jong Hoon;Shin, Hyun Young;Lee, Jeong-Gun;Tae, Ki-Sik;Kim, Minseok S.
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.30-35
    • /
    • 2018
  • Conventional drug delivery methods mainly include subcutaneous injection and oral administration. Subcutaneous injection has the advantages of delivering the correct concentration, but it might cause pain and trauma to patients. Although oral administrations do not accompany pain as the subcutaneous injection, unexpected side effects may occur because they undergo digestion process and it is not easy for many drugs to be exposed to targeted sites with proper concentration. While dissolving microneedles have been extensively studied to overcome the limitations of conventional subcutaneous injection, the effects on microneedle shapes for drug release have not been fully explored. In this study, the characteristics of hyaluronic acid microneedles for cone and quadrangular pyramidal shapes were examined by the size, volume, contact surface area, skin permeability, and dissolution rate. As a result, the cone shapes of hyaluronic acid microneedles had high skin permeability, and the quadrangular pyramid of shapes hyaluronic acid microneedles showed a fast dissolution rate, given by the large contact area on the skin. Based on the results, we could confirm that the shape of a dissolving microneedles can affect skin permeability and the drug delivery rate.

Topology Optimization of Offshore Wind-Power Turbine Substructure Using 3D Solid-Element Model (3 차원 고체요소모델을 활용한 해상풍력터빈 하부구조의 위상최적화)

  • Kim, Won Cheol;Chung, Tae Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.3
    • /
    • pp.309-314
    • /
    • 2014
  • The structural layout of mechanical and civil structures is commonly obtained using conventional methods. For example, the shape of structures such as electric transmission towers and offshore substructures can be generated systematically. However, with rapid advancements in computer graphic technology, advanced structural analyses and optimum design technologies have been implemented. In this study, the structural shape of a jacket substructure for an offshore wind turbine is investigated using a topology optimization technique. The structure is subjected to multiple loads that are intended to simulate the loading conditions during actual operation. The optimization objective function is defined as one that ensures compliance of the structure under the given boundary conditions. Optimization is carried out with constraints on the natural frequency in addition to the volume constraint. The result of a first step model provides quick insights into the optimum layout for the second step structure. Subsequently, a 3D model in the form of the frustum of a quadrilateral pyramid is developed through topology optimization.

Study of the Tidal Discharge (조석출입량에 관한 조사)

  • 최귀열
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.10 no.1
    • /
    • pp.1394-1408
    • /
    • 1968
  • The tidal discharge is defined as the quantity of water flowing through a certain cross-section per unit of time, in contrast to river discharges, tidal discharges change periodically in magnitude and direction. Thus the total volumes of water flowing into again out of the system-called flood volume and ebb volume, respectively, depend on both the tidal and the river discharges. To ditermine the tidal discharge and the flood and ebb volumes of the Yong-san river, the discharges were measured at spring, mean and neap tide and simultaneous gage reading were taken at Samhak-do, Lower Myo-do, Myongsan-ni and Naju. The general procedure for measuring the tidal discharges was as follows. First, several cross-sections were measured and one of them was chosen. First, several cross-sections were measured and one of them was chosen. Then verticals were serected in the chosen cross section. Because comparatively few verticals should be representative of the discharge distribution over the river profile, the selection was done in accordance with the somtimes irregular bottom profile. The velocities were measured with the same current meters. The observations which included water level readings were continued for a period of about 13 hours. The current direction meter, a pyramid shaped resistance body, suspend in the water on a thin wire. The bubble in a circular tilting level fixed to the wire indicates the direction of the current. Reading were taken at intervals of 1m for depths of 10m or less, and for depths over 10m at intervals of 2m, going downwards and upwards. The averages of the two velocities were used for the computation of the discharges. The discharges and the flood and ebb volumes were ditermined by a graphical method. The mean velocities, corrected for their direction when necesary, were ditermined for each time interval and each vertical, and these velocities were plotted against the time. The resulting curves show possible mistakes very clearly, and the effect of observation errors could be reduced. The corrected velocities read from the curve at half-hour intervals were multiplied by the depth at the virtical at the corresponding time. The discharges thus found were ploted against the position of the vertical in the transit and joined by a smooth curve, integration of the curve rendered the total discharges as they occurred of half-hour intervals. Plotting these total discharges against the time yeilded during the day. The flood and ebb volumes were obtained by integration of the total discharge curve.

  • PDF

A Constitutive Model for Soil Using Mohr-Coulomb Criteria (Mohr-Coulomb식(式)을 사용한 흙의 구성(構成)모델)

  • Lee, Hyung Soo;Lee, Byung Dae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1405-1415
    • /
    • 1994
  • The soil on the behavior of the nonlinear elastic work-hardening plasticity has a variety of stress paths due to the state of soil and the test conditions. The soil with a specific volume ${\upsilon}$ in principal stress space (${\sigma}_1$, ${\sigma}_2$, ${\sigma}_3$, and ${\upsilon}$v) displays the shape of an irregular hexagonal pyramid with an end cap. With variations of ${\upsilon}$ the size of the cap is changed but its shape remains unchanged and the movement of the cap is controlled by the increase or decrease of the plastic volumetric strain. By reflecting such a property of soil various cap models have been developed by researchers. In this thesis, a constitutive model of soil with a combination of the nonlinear elastic work-hardening plastic cap and the failure surfaces of Mohr-Coulomb (M-C cap model) has been developed. According to the the results of analyses using the work-hardening plastic cap model, the normally consolidated soil under shearing has experienced the work-hardening and plastic flow (movement of the cap). But in the shearing of the overconsolidated soil the elastic behavior is shown until the stress path has reached the failure surface and the cap does not move.

  • PDF

Dynamical Study on the Blasting with One-Free-Face to Utilize AN-FO Explosives (초유폭약류(硝油爆藥類)를 활용(活用)한 단일자유면발파(單一自由面發破)의 역학적(力學的) 연구(硏究))

  • Huh, Ginn
    • Economic and Environmental Geology
    • /
    • v.5 no.4
    • /
    • pp.187-209
    • /
    • 1972
  • Drilling position is one of the most important factors affecting on the blasting effects. There has been many reports on several blasting factors of burn-cut by Messrs. Brown and Cook, but in this study the author tried to compare drilling positions of burn-cut to pyramid-cut, and also to correlate burn-cut effects of drilling patterns, not being dealt by Prof. Ito in his theory, which emphasized on dynamical stress analysis between explosion and free face. According to former theories, there break out additional tensile stress reflected at the free face supplemented to primary compressive stress on the blasting with one-free-face. But with these experimented new drilling patterns of burn-cut, more free faces and nearer distance of each drilling holes make blasting effects greater than any other methods. To promote the above explosive effect rationary, it has to be considered two important categories under-mentioned. First, unloaded hole in the key holes should be drilled in wider diameter possibly so that it breaks out greater stress relief. Second, key holes possibly should have closer distances each other to result clean blasting. These two important factors derived from experiments with, theories of that the larger the dia of the unloaded hole, it can be allowed wider secondary free faces and closes distances of each holes make more developed stress relief, between loaded and unloaded holes. It was suggested that most ideal distance between holes is about 4 clearance in U. S. A., but the author, according to the experiments, it results that the less distance allow, the more effective blasting with increased broken rock volume and longer drifted length can be accomplished. Developed large hole burn-cut method aimed to increase drifting length technically under the above considerations, and progressive success resulted to achieve maximum 7 blasting cycles per day with 3.1m drifting length per cycle. This achievement originated high-speed-drifting works, and it was also proven that application of Metallic AN-FO on large hole burn-cut method overcomes resistance of one-free-face. AN-FO which was favored with low price and safety handling is the mixture of the fertilizer or industrial Ammonium-Nitrate and fuel oil, and it is also experienced that it shows insensible property before the initiation, but once it is initiated by the booster, it has equal explosive power of Ammonium Nitrate Explosives (ANE). There was many reports about AN-FO. On AN-FO mixing ratio, according to these experiments, prowdered AN-FO, 93.5 : 6.5 and prilled AN-FO 94 : 6, are the best ratios. Detonation, shock, and friction sensities are all more insensitive than any other explosives. Residual gas is not toxic, too. On initation and propagation of the detonation test, prilled AN-FO is more effective than powered AN-FO. AN-FO has the best explosion power at 7 days elapsed after it has mixed. While AN-FO was used at open pit in past years prior to other conditions, the author developed new improved explosives, Metallic AN-FO and Underwater explosive, based on the experiments of these fundmental characteristics by study on its usage utilizing AN-FO. Metallic AN-FO is the mixture of AN-FO and Al, Fe-Si powder, and Underwater explosive is made from usual explosive and AN-FO. The explanations about them are described in the other paper. In this study, it is confirmed that the blasting effects of utilizing AN-FO explosives are very good.

  • PDF