• Title/Summary/Keyword: Volume of pores

Search Result 221, Processing Time 0.028 seconds

Shrinkage Properties of Blast Furnance Slag Cement Mortar by using Frost-Resistant Accelerator (내한촉진제를 사용한 고로시멘트 모르타르의 수축성상)

  • Choi, Hyeong-Gil;Lee, Jun-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.1
    • /
    • pp.59-66
    • /
    • 2019
  • In this study, the effects of blast furnance slag cement and frost-resistant accelerator on shrinkage properties and shrinkage properties of mortar were examined. As a result, the addition of the frost-resistant accelerator to both OPC and BB has a small effect on the flash properties of mortar and the compressive strength increases from the early ages. In addition, when a frost-resistant accelerator is used in excess of the standard usage amount, it is necessary to examine the relationship of the expansion behavior at the early age, especially, between the compressive strength development and the expansion property. And it was confirmed that the addition of the frost-resistant accelerator tended to increase the shrinkage of mortar using the OPC and BB. With the addition of the frost-resistant accelerator, the amount of pores with a diameter of under the 30nm, especially, the amount of pores with a diameter of 20 to 30nm and the amount of pores with an ink-bottle decrease, and the shrinkage increases. And it is considered that a change in the amount this range of pores has a large effect on the shrinkage property.

Investigating dynamic stability behavior of sandwich plates with porous core based on a numerical approach

  • Zhu, Zhihui;Zhu, Meifang
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.609-615
    • /
    • 2022
  • A numerical approach for dynamic stability analysis of sandwich plates has been provided using Chebyshev-Ritz-Bolotin approach. The sandwich plate with porous core has been formulated according to a higher-order plate. All of material properties are assumed to be dependent of porosity factor which determines the amount or volume of pores. The sandwich plate has also been assumed to be under periodic in-plane loading of compressive type. It will be shown that stability boundaries of the sandwich plate are dependent on static and dynamical load factors, porosity factor, porosity variation and core thickness.

Full-scale Case Study on the Relationship between Surface Characteristics of GAC and TOC Removal (입상활성탄의 표면특성과 TOC제거와의 상관성 연구)

  • Baek, Youngae;Joe, Woohyun;Hong, Byungeui;Kim, Kwangho;Choi, Young-june
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.3
    • /
    • pp.323-328
    • /
    • 2008
  • During the full-scale water treatment operation at "G" Water Treatment Plant in Seoul, we investigated changes in pore volume distribution and specific surface area of GAC with time. The pore volume of the used GAC decreased to the level below 0.6 cc/g while that of the brand new GAC was ranged 0.7~0.9 cc/g. The specific surface area of GAC pores changed within the range between $1100{\sim}1200m^2/g$ and $700{\sim}800m^2/g$. Bacteria attached to the surface of GAC shows a gradual increase ($0.4{\time}10^6{\sim}8.5{\time}10^6CFU/g$) under scanninig electron microscope (SEM). TOC removal was enhanced due to growth of the attached bacteria on GAC. It was found that TOC removal was closely related with physical parameters (pore volume, specific surface area) linearly under the investigated conditions. The used GAC need to be exchanged into new one or re-generated to remove organic matters (TOC) effectively from the finished drinking water.

Development of lightweight concrete using the PCM II : Investigation on Foam Volume/Fly Ash Relationship of Foam Concrete, and Effect of High Content Micro Polypropylene Fiber and Microstructure

  • Lim, Myung-Kwan;Enkhbold, odontuya;Choi, Dong-Uk
    • KIEAE Journal
    • /
    • v.15 no.4
    • /
    • pp.45-52
    • /
    • 2015
  • Purpose: Foam concrete is the concrete that contains large amount of air voids inside. In general, the density of foam concrete depends on parameters like water/binder ratio, foam volume, aggregate and pozzolan content, etc. Method: In this study, the effect of foam volume and fly ash content on dry density is investigated intensively in order to find the relationship between each parameter and their abilities to counteract with each other. According to the above information, though there are quite a number of studies on the effect micro fiber on foam concrete at low volume fractions, there is still lack of information especially on the high fiber content side. The objective of the second study is to investigate further on the use of micro fiber at higher volume fraction and fill in the lacking information. Beside from this study, the investigation of the effect of micro-fiber (polypropylene) to enhance the properties of foam concrete is also carried out. Result: Of the two variables that are investigated in this study, the foam volume and the fly ash content, show significant effect on the properties of foam concrete. The foam volume tends to decrease the density and strength of foam concrete. In the second part of our study, a large fibre volume fraction is proved to be able to evidently increase the flexural strength of foam concrete up to about 40% due to the effect of fibre bridging over the crack and a significant number of fibres that intercepts the crack surfaces. However, the compressive strength is found to decrease severely due to the occurrence of large pores as the result of fibre being added into concrete mixture.

Effect of Spreading Time of Waste Cooking Oil on Carbonation and Resistance to Chloride Penetration of High Volume Mineral Admixture Concrete (폐식용유 기반 도포제의 도포시기에 따른 혼화재 다량치환 콘크리트의 탄산화 및 염해저항성에 미치는 영향)

  • Kim, Sang-Sup;Park, Jun-Hee;Jung, Sang-Un;Lee, Myung-Ho;Han, Min Cheol;Han, Cheon Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.133-134
    • /
    • 2014
  • As a previous research, improved durability of concrete by filling capillary pores with waste cooking oil was suggested as a method of controlling carbonation of the concrete replaced high volume of SCMs. on the other hand, the emulsified refined waste cooking oil for better mixing performance had a drawback of reducing air content related with decreasing freeze-thawing resistance. As a solution of this problem, surface applying method was suggested instead of adding in mixing process, and in this research, the performance regarding concrete durability are evaluated comparing emulsified refined cooking oil with water-repelling agent.

  • PDF

Mechanical Properties of Carbon-Fiber Reinforced Polymer-Impregnated Cement Composites

  • Park, Seung-Bum;Yoon, Eui-Sik
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.65-77
    • /
    • 1999
  • A portland cement was reinforced by incorporating carbon fiber(CF), silica powder, and impregnating the pores with styrene monomers which were polymerized in situ. The effects of type, length, and volume loading of CF, mixing conditions, curing time and, curing conditions on mechanical behavior as well as freeze-thaw resistance and longer term stability of the carbon-fiber reinforced cement composites (CFRC) were investigated. The composite Paste exhibited a decrease in flow values linearly as the CF volume loadings increased. Tensile, compressive, and flexural strengths all generally increased as the CF loadings in the composite increased. Compressive strength decreased at CF loadings above approx. 3% in CFRC having no impregnated polymers due to the increase in porosity caused by the fibers. However, the polymer impregnation of CFRC improved all the strength values as compared with CFRC having no Polymer impregnation. Tensile stress-strain curves showed that polymer impregnation decreased the fracture energy of CFRC. Polymer impregnation clearly showed improvements in freeze-thaw resistance and drying shrinkage when compared with CFRC having no impregnated polymers.

  • PDF

Velume Phase Transition of Poly (N-isopropylacrylamide-co-sodium methacrylate) Hydrogel Crosslinked with Poly(ethylene glycol) diacrylate (Poly(ethylene glyco1) diacrylate로 가교된 Poly(N-isopropylacrylamide) Hydrogel의 부피 상전이 특성)

  • 김선아;한영아;손성옥;지병철
    • Polymer(Korea)
    • /
    • v.26 no.5
    • /
    • pp.653-660
    • /
    • 2002
  • The volume phase transition of poly(N-isopropylacrylamide) (PNIPAAm) and poly (N-isopropylacrylamide-co-sodium methacrylate) (P (NIPAAm-co-SMA)) hydrogels crosslinked with poly (ethylene glycol) diacrylate (PEGDA) was investigated in consideration of water content and surface area. The volume phase transition temperature of hydrogel was not affected by the concentration of crosslinking agent, which increased over 40$\^{C}$ by incorporating a small amount of SMA. Higher volume phase transition temperature was obtained when PEGAD was used as a crosslinking agent, suggesting that the chain length of crosslinking agent had a significant effect on the volume phase transition temperature. The surface area of PNIPAAm and P (NIPAAm-co-SMA) gels fell off around the volume phase transition temperature, resulting from the fact that the size of pores reduced remarkably in the course of the volume phase transition. Hence, the surface area and the pore size were considered to be important factors indicating the volume phase transition.

Study on the Effect of Physical Properties of Fuels on the Anode Reaction in a DCFC System (연료의 물리적 특성과 직접탄소연료전지의 연료극 반응성에 관한 연구)

  • Ko, Tae-Wook;Ahn, Seong-Yool;Choi, Gyung-Min;Kim, Duck-Jool
    • Journal of Energy Engineering
    • /
    • v.20 no.4
    • /
    • pp.309-317
    • /
    • 2011
  • The effect of physical properties of coal fuels and carbon particle on performance of DCFC (Direct Carbon Fuel Cell) was investigated. Shenhua and Adaro were selected as coal fuel and carbon particle was used for comparing with coal. The Ultimate, proximate, SEM, XRD, and BET analysis of samples were conducted. The component of char was more important than that of raw coal because the operating temperature of reactor is higher than devolatilization region of coal. The surface area and volume of pores affected significantly the performance of the system than content of fixed carbon or char rates. The performance of DCFC with carbon particle was in proportional to working temperature.

Hemorheological measurements in experimental animals: further consideration of cell size - pore size relations in filtrometry

  • Nemeth, Norbert;Baskurt, Oguz K.;Meiselman, Herbert J.;Furka, Istvan;Miko, Iren
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.3
    • /
    • pp.155-160
    • /
    • 2009
  • Micropore filtration of dilute red blood cell (RBC) suspensions is a widely known method for determining red blood cell deformability. Use of this method for cells from various laboratory animal species does require considering the effects of the cell size to pore size ratio and of suspension hematocrit. In general, previous animal studies have utilized 5% hematocrit suspensions and five micron pores, and thus conditions similar to human clinical laboratory practice. However, when used for repeated sampling from small laboratory animals or for parallel multiple samples from different sites in large laboratory animals, the volume of blood sampled and hence the hematocrit of the test suspension may be limited. Our results indicate that hematocrit levels yielding stable values of RBC pore transit time are pore size and species specific: three micron pores = $2{\sim}5%$ for dog and $3{\sim}5%$ for rat; five micron pores $3{\sim}5%$ for dog and $1{\sim}5%$ for rat. An analytical approach using a common expression for calculating transit time is useful for determining the sensitivity of this time to hematocrit alterations and hence to indicate hematocrit levels that may be problematic.

Microstructure of Non-Sintered Inorganic Binder using Phosphogypsum and Waste Lime as Activator

  • Kim, Ji-Hoon;An, Yang-Jin;Mun, Kyung-Ju;Hyung, Won-Gil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.3
    • /
    • pp.305-312
    • /
    • 2018
  • This study is about the development of a non-sintered binder (NSB) which does not require a sintering process by using the industrial by-products Phosphogypsum (PG), Waste Lime (WL) and Granulated Blast Furnace Slag (GBFS). In this report, through SEM analysis of the NSB paste hardening body, micropore analysis of paste using the mercury press-in method and microstructure observation were executed to consider the influence of the formation of the pore structure and the distribution of pore volume on strength, and the following conclusions were reached. 1) Pore structure of NSB paste of early age is influenced by hydrate generation amount by GBFS and activator. 2) Through observing the internal microstructure of NSB binder paste, it was found that the strength expression at early age due to hydration reaction was achieved with a large amount of ettringite serving as the frame with C-S-H gel generated at the same time. It was confirmed that C-S-H gel wrapped around ettringite, and as time passed, the amount generated continually increased, and C-S-H gel tightly filled the pores of hardened paste, forming a dense network-type web structure. 3) For NSB-type cement, the degree of formation of gel pores below $10{\mu}m$ had a greater influence on strength improvement than simple pore reduction by charging capillary pores, and the pore size that had the greatest effect on strength was micropores with diameter below $10{\mu}m$.