• 제목/요약/키워드: Volume of pores

검색결과 222건 처리시간 0.026초

내한촉진제를 사용한 고로시멘트 모르타르의 수축성상 (Shrinkage Properties of Blast Furnance Slag Cement Mortar by using Frost-Resistant Accelerator)

  • 최형길;이준철
    • 한국건축시공학회지
    • /
    • 제19권1호
    • /
    • pp.59-66
    • /
    • 2019
  • 고로시멘트와 내한촉진제를 병용한 모르타르의 수축특성 및 수축성상에 미치는 영향에 대해 검토했다. 그 결과, OPC, BB 모두 내한촉진제를 첨가함에 따라 굳지 않은 성상에 미치는 영향은 작고, 초기재령부터 압축강도는 커진다. 또한, 내한 촉진제를 표준 사용량 이상으로 다량 사용할 경우에는 초기재령에 있어서의 팽창거동, 특히 강도발현과 팽창성의 관계에 대해 검토할 필요가 있다. 한편, 내한촉진제를 첨가함으로써 OPC, BB 모두 길이변화는 증가하는 경향을 확인할 수 있었다. 내한촉진제를 첨가함에 따라 직경 30nm 이하의 세공량, 특히 직경 20~30nm의 세공량 및 ink-bottle 세공량이 감소하여 수축량은 커지게 되며, 이 범위의 세공량의 변화가 수축성상에 미치는 영향이 크다고 판단된다.

Investigating dynamic stability behavior of sandwich plates with porous core based on a numerical approach

  • Zhu, Zhihui;Zhu, Meifang
    • Structural Engineering and Mechanics
    • /
    • 제83권5호
    • /
    • pp.609-615
    • /
    • 2022
  • A numerical approach for dynamic stability analysis of sandwich plates has been provided using Chebyshev-Ritz-Bolotin approach. The sandwich plate with porous core has been formulated according to a higher-order plate. All of material properties are assumed to be dependent of porosity factor which determines the amount or volume of pores. The sandwich plate has also been assumed to be under periodic in-plane loading of compressive type. It will be shown that stability boundaries of the sandwich plate are dependent on static and dynamical load factors, porosity factor, porosity variation and core thickness.

입상활성탄의 표면특성과 TOC제거와의 상관성 연구 (Full-scale Case Study on the Relationship between Surface Characteristics of GAC and TOC Removal)

  • 백영애;조우현;홍병의;김광호;최영준
    • 상하수도학회지
    • /
    • 제22권3호
    • /
    • pp.323-328
    • /
    • 2008
  • During the full-scale water treatment operation at "G" Water Treatment Plant in Seoul, we investigated changes in pore volume distribution and specific surface area of GAC with time. The pore volume of the used GAC decreased to the level below 0.6 cc/g while that of the brand new GAC was ranged 0.7~0.9 cc/g. The specific surface area of GAC pores changed within the range between $1100{\sim}1200m^2/g$ and $700{\sim}800m^2/g$. Bacteria attached to the surface of GAC shows a gradual increase ($0.4{\time}10^6{\sim}8.5{\time}10^6CFU/g$) under scanninig electron microscope (SEM). TOC removal was enhanced due to growth of the attached bacteria on GAC. It was found that TOC removal was closely related with physical parameters (pore volume, specific surface area) linearly under the investigated conditions. The used GAC need to be exchanged into new one or re-generated to remove organic matters (TOC) effectively from the finished drinking water.

Development of lightweight concrete using the PCM II : Investigation on Foam Volume/Fly Ash Relationship of Foam Concrete, and Effect of High Content Micro Polypropylene Fiber and Microstructure

  • Lim, Myung-Kwan;Enkhbold, odontuya;Choi, Dong-Uk
    • KIEAE Journal
    • /
    • 제15권4호
    • /
    • pp.45-52
    • /
    • 2015
  • Purpose: Foam concrete is the concrete that contains large amount of air voids inside. In general, the density of foam concrete depends on parameters like water/binder ratio, foam volume, aggregate and pozzolan content, etc. Method: In this study, the effect of foam volume and fly ash content on dry density is investigated intensively in order to find the relationship between each parameter and their abilities to counteract with each other. According to the above information, though there are quite a number of studies on the effect micro fiber on foam concrete at low volume fractions, there is still lack of information especially on the high fiber content side. The objective of the second study is to investigate further on the use of micro fiber at higher volume fraction and fill in the lacking information. Beside from this study, the investigation of the effect of micro-fiber (polypropylene) to enhance the properties of foam concrete is also carried out. Result: Of the two variables that are investigated in this study, the foam volume and the fly ash content, show significant effect on the properties of foam concrete. The foam volume tends to decrease the density and strength of foam concrete. In the second part of our study, a large fibre volume fraction is proved to be able to evidently increase the flexural strength of foam concrete up to about 40% due to the effect of fibre bridging over the crack and a significant number of fibres that intercepts the crack surfaces. However, the compressive strength is found to decrease severely due to the occurrence of large pores as the result of fibre being added into concrete mixture.

폐식용유 기반 도포제의 도포시기에 따른 혼화재 다량치환 콘크리트의 탄산화 및 염해저항성에 미치는 영향 (Effect of Spreading Time of Waste Cooking Oil on Carbonation and Resistance to Chloride Penetration of High Volume Mineral Admixture Concrete)

  • 김상섭;박준희;정상운;이명호;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 추계 학술논문 발표대회
    • /
    • pp.133-134
    • /
    • 2014
  • As a previous research, improved durability of concrete by filling capillary pores with waste cooking oil was suggested as a method of controlling carbonation of the concrete replaced high volume of SCMs. on the other hand, the emulsified refined waste cooking oil for better mixing performance had a drawback of reducing air content related with decreasing freeze-thawing resistance. As a solution of this problem, surface applying method was suggested instead of adding in mixing process, and in this research, the performance regarding concrete durability are evaluated comparing emulsified refined cooking oil with water-repelling agent.

  • PDF

Mechanical Properties of Carbon-Fiber Reinforced Polymer-Impregnated Cement Composites

  • Park, Seung-Bum;Yoon, Eui-Sik
    • KCI Concrete Journal
    • /
    • 제11권3호
    • /
    • pp.65-77
    • /
    • 1999
  • A portland cement was reinforced by incorporating carbon fiber(CF), silica powder, and impregnating the pores with styrene monomers which were polymerized in situ. The effects of type, length, and volume loading of CF, mixing conditions, curing time and, curing conditions on mechanical behavior as well as freeze-thaw resistance and longer term stability of the carbon-fiber reinforced cement composites (CFRC) were investigated. The composite Paste exhibited a decrease in flow values linearly as the CF volume loadings increased. Tensile, compressive, and flexural strengths all generally increased as the CF loadings in the composite increased. Compressive strength decreased at CF loadings above approx. 3% in CFRC having no impregnated polymers due to the increase in porosity caused by the fibers. However, the polymer impregnation of CFRC improved all the strength values as compared with CFRC having no Polymer impregnation. Tensile stress-strain curves showed that polymer impregnation decreased the fracture energy of CFRC. Polymer impregnation clearly showed improvements in freeze-thaw resistance and drying shrinkage when compared with CFRC having no impregnated polymers.

  • PDF

Poly(ethylene glyco1) diacrylate로 가교된 Poly(N-isopropylacrylamide) Hydrogel의 부피 상전이 특성 (Velume Phase Transition of Poly (N-isopropylacrylamide-co-sodium methacrylate) Hydrogel Crosslinked with Poly(ethylene glycol) diacrylate)

  • 김선아;한영아;손성옥;지병철
    • 폴리머
    • /
    • 제26권5호
    • /
    • pp.653-660
    • /
    • 2002
  • 가교제 poly(ethylene glycol) diacrylate (PEGDA)를 사용하여 제조한 poly(N-iso-propylacrylamide) (PNIPAAm) 및 poly (N-isopropylacrylamide-co-sodium methacrylate) (P(NIPAAm-co-SMA)) hydrogels의 부피 상전이 현상을 함수율과 표면적의 변화로 고찰하였다. Hydyogel의 부피 상전이 온도는 가교제의 농도에는 영향을 받지 않았으나 공단량체인 SMA의 소량 첨가로 4$0^{\circ}C$ 이상 상승하였다. 특히 PEGDA를 가교제로 사용하였을 경우 가교 길이가 길어짐에 따라 부피 상전이 온도가 더 높게 상승하였다. PNIPAAm 및 P(NIPAAm-co-SMA) hydrogels의 표면적 역시 부피 상전이 온도를 전후하여 감소하였는데 이는 부피 상전이 과정에서 기공의 크기가 현저하게 감소하였기 때문이다. 따라서 표면적과 기공 크기의 변화가 부피 상전이를 나타내는 주요한 인자임을 알 수 있다.

연료의 물리적 특성과 직접탄소연료전지의 연료극 반응성에 관한 연구 (Study on the Effect of Physical Properties of Fuels on the Anode Reaction in a DCFC System)

  • 고태욱;안성율;최경민;김덕줄
    • 에너지공학
    • /
    • 제20권4호
    • /
    • pp.309-317
    • /
    • 2011
  • 연료의 물리의 특성에 따른 직접탄소 연료전지(Direct Carbon Fuel Cell)성능해석을 위해 국내 화력발전소에서 사용되고 있는 석탄 중에서 역청탄(Shenhua coal), 아역청탄(Adaro coal) 각 1종 및 순수한 탄소성분들의 결정체인 탄소 입자(Carbon particle)를 연료로 사용하여 DCFC시스템의 성능변화를 분석하였다. 연료의 물리적 특성에 따른 DCFC의 성능해석을 위해 SEM, XRD 및 BET 분석을 통해 연료의 물리적 특성(표면적, 기공의 크기, 결정립의 크기 및 구조, 구성성분)을 분석하였다. 직접탄소 연료전지는 873 K 이상의 온도에서 작동하는 고온형 연료전지이기 때문에, 성능 해석은 원탄(Raw coal)보다는 일정온도에서 탈휘발 과정이 끝난 촤의 물성 분석이 더욱 중요하다. SEM, XRD 및 BET 분석을 통한 물리적 특성 분석결과를 바탕으로 성능측정 결과를 비교분석한 결과, 연료의 탄소 함량 보다는 표면적과 기공체적이 연료 전지의 성능에 큰 영향을 미치게 되며, 원탄의 물성보다는 촤 상태의 물성에 더 많은 영향을 받는다. 또한 연료전지의 성능은 작동 온도에 영향을 받으며, 온도가 상승함에 따라 성능도 상승하게 된다.

Hemorheological measurements in experimental animals: further consideration of cell size - pore size relations in filtrometry

  • Nemeth, Norbert;Baskurt, Oguz K.;Meiselman, Herbert J.;Furka, Istvan;Miko, Iren
    • Korea-Australia Rheology Journal
    • /
    • 제21권3호
    • /
    • pp.155-160
    • /
    • 2009
  • Micropore filtration of dilute red blood cell (RBC) suspensions is a widely known method for determining red blood cell deformability. Use of this method for cells from various laboratory animal species does require considering the effects of the cell size to pore size ratio and of suspension hematocrit. In general, previous animal studies have utilized 5% hematocrit suspensions and five micron pores, and thus conditions similar to human clinical laboratory practice. However, when used for repeated sampling from small laboratory animals or for parallel multiple samples from different sites in large laboratory animals, the volume of blood sampled and hence the hematocrit of the test suspension may be limited. Our results indicate that hematocrit levels yielding stable values of RBC pore transit time are pore size and species specific: three micron pores = $2{\sim}5%$ for dog and $3{\sim}5%$ for rat; five micron pores $3{\sim}5%$ for dog and $1{\sim}5%$ for rat. An analytical approach using a common expression for calculating transit time is useful for determining the sensitivity of this time to hematocrit alterations and hence to indicate hematocrit levels that may be problematic.

Microstructure of Non-Sintered Inorganic Binder using Phosphogypsum and Waste Lime as Activator

  • Kim, Ji-Hoon;An, Yang-Jin;Mun, Kyung-Ju;Hyung, Won-Gil
    • 한국건축시공학회지
    • /
    • 제18권3호
    • /
    • pp.305-312
    • /
    • 2018
  • This study is about the development of a non-sintered binder (NSB) which does not require a sintering process by using the industrial by-products Phosphogypsum (PG), Waste Lime (WL) and Granulated Blast Furnace Slag (GBFS). In this report, through SEM analysis of the NSB paste hardening body, micropore analysis of paste using the mercury press-in method and microstructure observation were executed to consider the influence of the formation of the pore structure and the distribution of pore volume on strength, and the following conclusions were reached. 1) Pore structure of NSB paste of early age is influenced by hydrate generation amount by GBFS and activator. 2) Through observing the internal microstructure of NSB binder paste, it was found that the strength expression at early age due to hydration reaction was achieved with a large amount of ettringite serving as the frame with C-S-H gel generated at the same time. It was confirmed that C-S-H gel wrapped around ettringite, and as time passed, the amount generated continually increased, and C-S-H gel tightly filled the pores of hardened paste, forming a dense network-type web structure. 3) For NSB-type cement, the degree of formation of gel pores below $10{\mu}m$ had a greater influence on strength improvement than simple pore reduction by charging capillary pores, and the pore size that had the greatest effect on strength was micropores with diameter below $10{\mu}m$.