• Title/Summary/Keyword: Volume of pores

Search Result 221, Processing Time 0.027 seconds

Microstructural, Mechanical, and Durability Related Similarities in Concretes Based on OPC and Alkali-Activated Slag Binders

  • Vance, Kirk;Aguayo, Matthew;Dakhane, Akash;Ravikumar, Deepak;Jain, Jitendra;Neithalath, Narayanan
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.4
    • /
    • pp.289-299
    • /
    • 2014
  • Alkali-activated slag concretes are being extensively researched because of its potential sustainability-related benefits. For such concretes to be implemented in large scale concrete applications such as infrastructural and building elements, it is essential to understand its early and long-term performance characteristics vis-a'-vis conventional ordinary portland cement (OPC) based concretes. This paper presents a comprehensive study of the property and performance features including early-age isothermal calorimetric response, compressive strength development with time, microstructural features such as the pore volume and representative pore size, and accelerated chloride transport resistance of OPC and alkali-activated binder systems. Slag mixtures activated using sodium silicate solution ($SiO_2$-to-$Na_2O$ ratio or $M_s$ of 1-2) to provide a total alkalinity of 0.05 ($Na_2O$-to-binder ratio) are compared with OPC mixtures with and without partial cement replacement with Class F fly ash (20 % by mass) or silica fume (6 % by mass). Major similarities are noted between these binder systems for: (1) calorimetric response with respect to the presence of features even though the locations and peaks vary based on $M_s$, (2) compressive strength and its development, (3) total porosity and pore size, and (4) rapid chloride permeability and non-steady state migration coefficients. Moreover, electrical impedance based circuit models are used to bring out the microstructural features (resistance of the connected pores, and capacitances of the solid phase and pore-solid interface) that are similar in conventional OPC and alkali-activated slag concretes. This study thus demonstrates that performance-equivalent alkali-activated slag systems that are more sustainable from energy and environmental standpoints can be proportioned.

Embedding Cobalt Into ZIF-67 to Obtain Cobalt-Nanoporous Carbon Composites as Electrode Materials for Lithium ion Battery

  • Zheng, Guoxu;Yin, Jinghua;Guo, Ziqiang;Tian, Shiyi;Yang, Xu
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.458-464
    • /
    • 2021
  • Lithium ion batteries (LIBs) is a kind of rechargeable secondary battery, developed from lithium battery, lithium ions move between the positive and negative electrodes to realize the charging and discharging of external circuits. Zeolitic imidazolate frameworks (ZIFs) are porous crystalline materials in which organic imidazole esters are cross-linked to transition metals to form a framework structure. In this article, ZIF-67 is used as a sacrificial template to prepare nano porous carbon (NPC) coated cobalt nanoparticles. The final product Co/NPC composites with complete structure, regular morphology and uniform size were obtained by this method. The conductive network of cobalt and nitrogen doped carbon can shorten the lithium ion transport path and present high conductivity. In addition, amorphous carbon has more pores that can be fully in contact with the electrolyte during charging and discharging. At the same time, it also reduces the volume expansion during the cycle and slows down the rate of capacity attenuation caused by structure collapse. Co/NPC composites first discharge specific capacity up to 3115 mA h/g, under the current density of 200 mA/g, circular 200 reversible capacity as high as 751.1 mA h/g, and the excellent rate and resistance performance. The experimental results show that the Co/NPC composite material improves the electrical conductivity and electrochemical properties of the electrode. The cobalt based ZIF-67 as the precursor has opened the way for the design of highly performance electrodes for energy storage and electrochemical catalysis.

Experimental and Modeling Studies for the Adsorption of Phenol from Water Using Natural and Modified Algerian Clay

  • Djemai, Ismahane;Messaid, Belkacem
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.624-634
    • /
    • 2020
  • The ability of natural and modified clay to adsorb phenol was studied. The clay samples were analyzed by different technical instruments, such as X-ray fluorescence (XRF), X-ray diffraction (XRD) and FT-IR spectroscopy. Surface area, pore volume and average pore diameter were also determined using B.E.T method. Up to 73 and 99% of phenol was successfully adsorbed by natural and activated clay, respectively, from the aqueous solution. The experiments carried out show that the time required to reach the equilibrium of phenol adsorption on all the samples is very close to 60 min. The amount of phenol adsorbed shows a declining trend with higher pH as well as with lower pH, with most extreme elimination of phenol at pH 4. The adsorption of phenol increases proportionally with the initial phenol concentration. The maximum adsorption capacity at 25 ℃ and pH 4 was 29.661 mg/g for modified clay (NaMt). However, the effect of temperature on phenol adsorption was not significant. The simple modification causes the formation of smaller pores in the solid particles, resulting in a higher surface area of NaMt. The equilibrium results in aqueous systems were well fitted by the Freundlich isotherm equation (R2 > 0.98). Kinetic studies showed that the adsorption process is best described by the pseudo-second-order kinetics (R2 > 0.99). The adsorption of phenol on natural and modified clay was spontaneous and exothermal.

Chemical Activation Characteristics of Pitch-Based Carbon Fibers by KOH

  • Jang, Jeen-Seok;Lee, Young-Seak;Kim, In-Ki;Yim, Going
    • Carbon letters
    • /
    • v.1 no.2
    • /
    • pp.69-75
    • /
    • 2000
  • Naphtha cracking bottom oil was reformed with heat treatment and then spun at $310^{\circ}C$. These pitch-based carbon fibers were carbonized at $1000^{\circ}C$ after oxidation at $280^{\circ}C$, for 90 min. These fibers were chemically activated with molar ratio of KOH/CF (1 : 1) at different temperatures ($250{\sim}900^{\circ}C$) for 1 hr. The process of activation was characterized with DTA, TGA, BET surface area and pore size distribution. The activation of fibers by KOH was performed by several process. One is the reduction process that carbon fiber was reacted with $K_2O$ produced from dehydration process above $400^{\circ}C$. The other is the process that $K_2CO_3$ was directly reacted with carbon fiber. At $800^{\circ}C$, the activation was performed by catalyzed mechanism that $K_2O$ was obtained from the reaction of metal potassium with $CO_2$, then was changed to $K_2CO_3$. At $870^{\circ}C$, the activation was also observed that activation mechanism was promoted by metal catalyst with $CO_2$ from decomposition of $K_2CO_3$. The specific surface area of prepared activated carbon fibers was dependent on the activation mechanism. The specific surface area was in the range of $1519{\sim}2000\;cm^3/g$ and was the largest prepared at $870^{\circ}C$. The pores developed were mostly micropores which was very narrow and uniform. The total pore volume was $0.58{\sim}0.77\;cm^3/g$.

  • PDF

Fabrication of Porous Al2O3-(m-ZrO2) Composites and Al2O3-(m-ZrO2)/PMMA Hybrid Composites by Infiltration Process

  • Lee, Byong-Taek;Quang, Do Van;Song, Ho-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.6 s.301
    • /
    • pp.291-296
    • /
    • 2007
  • Porous $Al_2O_3-(m-ZrO_2)$ composites were fabricated by pressureless sintering, using different volume percentages (40% - 60%) of poly methyl methacrylate (PMMA) powders as a pore-forming agent. The pore-forming agent was successfully removed, and the pore size and shape were well-controlled during the burn-out and sintering processes. The average pore size in the porous $Al_2O_3-(m-ZrO_2)$ bodies was about $200\;{\mu}m$ in diameter. The values of relative density, bending strength, hardness, and elastic modulus decreased as the PMMA content increased; i.e., in the porous body (sintered at $1500^{\circ}C$) using 55 vol % PMMA, their values were about 50.8%, 29.8 MPa, 266.4 Hv, and 6.4 GPa, respectively. To make the $Al_2O_3-(m-ZrO_2)$/polymer hybrid composites, a bioactive polymer, such as PMMA, was infiltrated into the porous $Al_2O_3-(m-ZrO_2)$ composites. After infiltration, most of the pores in the porous $Al_2O_3-(m-ZrO_2)$ composites, which were made using 60 vol % PMMA additions, were infiltrated with PMMA, and their values of relative density, bending strength, hardness, and elastic modulus remarkably increased.

Characterization of fine lightweight aggregates sintered at floating state using by vertical furnace (수직로에서 부유 소성된 경량 세골재의 특성)

  • Kang, Seung-Gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.6
    • /
    • pp.258-263
    • /
    • 2008
  • The fine aggregates of below 2 mm size was fabricated using by the vertical furnace in which the aggregates could be sintered at floating state and its physical properties were analyzed. The liquid formed at the surface of specimens sintered at $1200{\sim}l300^{\circ}C$ induced a gas in core to expand so the denser shell and porous core could be produced. The C series specimen fabricated by crushing an extruded body had an irregular shape and sharp edges but those became spheroidized by bloating due to gas expansion inside. The fine aggregates fabricated in this study was as light as floating in the water and had an apparent density of $0.68{\sim}1.08$. The absorption rate was proportioned to a porosity showing that the pores in core was not closed completely. The properties of fine aggregates fabricated in vertical furnace were similar with those of in an electric muffle furnace but the sticking-together phenomenon by surface fusion was not occurred in the vertical furnace. The aggregates fabricated in this study had a little lower impact resistance than that of natural aggregate but satisfied the unit volume weight standard specified in KS.

Manufacture of Iron, Copper and Silver Ions Impregnated Activated Carbon (철, 구리, 은염이 첨착된 활성탄의 제조)

  • Park, Seung-Cho;Choi, Seong-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.384-388
    • /
    • 2006
  • The adsorption ability of polar and toxic substance was greatly enhanced by treating activated carbon with acid solution and impregnating iron, copper, or silver by using in 0.1 M $FeSO_4{\cdot}7H_2O,\;CuSO_4{\cdot}5H_2O,\;AgNO_3$ 300 mL per activated carbon 50 g. Physical and chemical properties of the metal impregnated activated carbons were measured using specific surface area, pore volume and size distribution, scanning eletron microscope(SEM), adsorption isotherm. When activated carbon was treated with acid, the quantity of impregnated metal increased about 1.3 times since the micropores were converted to mesopores or macropores. Both the physical absorption by micropores and chemical absorption by metal ions could be achieved simultaneously with the metal impregnated activated carbon because the capacity of micro pores did not change even after metal ions were impregnated.

Porous Sn-incorporated Ga2O3 nanowires synthesized by a combined process of powder sputtering and post thermal annealing (분말 스퍼터링과 후열처리 복합 공정으로 제조한 주석 함유 갈륨 산화물 다공성 나노와이어)

  • Lee, Haram;Kang, Hyon Chol
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.245-250
    • /
    • 2019
  • We investigated the post-annealing effect of Sn-incorporated β-Ga2O3 (β-Ga2O3 : Sn) nanowires (NWs) grown on sapphire (0001) substrates using radio-frequency powder sputtering. The β-Ga2O3 : Sn NWs were converted to a porous structure during the vacuum annealing process at 800℃. Host non-stoichiometric Ga2O3-x, is transformed into stoichiometric Ga2O3, where Sn atoms separate and form Sn nano-clusters that gradually evaporate in a vacuum atmosphere. As a result, the amount of Sn atoms was reduced from 1.31 to 0.27 at%. Pores formed on the sides of β-Ga2O3 : Sn NWs were observed. This increases the ratio of the surface to the volume of β-Ga2O3 : Sn NWs.

Modified-stoichiometric Model for Describing Hydration of Alkali-Activated Slag (알칼리 활성 슬래그의 수화에 대한 개선된 화학양론적 모델)

  • Abate, Selamu Yihune;Park, Solmoi;Song, Keum-Il;Lee, Bang-Yeon;Kim, Hyeong-Ki
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • The present study proposes the modified-stoichiometric model for describing hydration of sodium silicate-based alkaliactivated slag(AAS), and compares the results with the thermodynamic modelling-based calculations. The proposed model is based on Chen and Brouwers(2007a) model with updated database as reported in recent studies. In addition, the calculated results for AAS are compared to those for hydrated portland cement. The maximum difference between the proposed model and the thermodynamic calculation for AAS was at most 20%, and the effects of water-to-binder ratio and activator dosages were identically described by both approaches. In particular, the amount of non-evaporable water was within 10% difference, and was in excellent agreement with the experimental results. Nevertheless, notable deviation was observed for the chemical shrinkage, which is largely dependent on the volume of hydrates and pores.

Characterization of a pH/Temperature-Sensitive Hydrogel Synthesized at Different pH and Temperature Conditions (pH/온도-동시 민감성 Hydrogel의 합성조건에 따른 특성 연구)

  • 유형덕;정인식;박창호
    • KSBB Journal
    • /
    • v.15 no.6
    • /
    • pp.548-555
    • /
    • 2000
  • A hydrogel, poly(N-isopropylacrylamide-co-N, N-dimethylaminopropylmethacrylamide), sensitive to both pH and temperature, was synthesized and characterized at $^13∼23{\circ}C$ and pH of 10.3∼12.3. The gel was more transparent and mechanically stronger at lower preparation temperature and pH. Large pores observed in scanning electron microscope seem to be responsible for the lower biomolecular separation efficiency. The lower critical solution temperature (LCST) decreased at a higher polymerization temperature. At $25^{\circ}C$, which is lower than the LCST, the gel was swollen regardless of the solution pH. At $40^{\circ}C$, however, the gel was swollen at neutral and acidic pHs even though the temperature was higher than the LCST. The gel collapse pH, defined as the point at which the gel made its largest volume decrease per unit pH increment, increased as the gel preparation temperature increased.

  • PDF