• Title/Summary/Keyword: Volume Fraction

Search Result 2,453, Processing Time 0.027 seconds

Effects of C on the Strength and Toughness of FCAW Weld Metal of YS 460 MPa Steels for Ship and Offshore Structures (선박·해양 구조물용 YS 460MPa 강재 FCAW 용접금속의 강도와 인성에 미치는 C의 영향)

  • Jeong, Sang-Hoon;Eom, Jeong-Ho;Choi, Han-Geul;Jeong, Byung-Ho;Hur, Sung-Hwa;Kang, Chang-Yong
    • Journal of Welding and Joining
    • /
    • v.32 no.6
    • /
    • pp.29-34
    • /
    • 2014
  • This paper has an purpose to study the effect of C on the toughness of YS 460 MPa FCAW weld metal. These effects were evaluated by charpy impact and CTOD test about 4 FCAW weld metal containing various C and Si content in relation to microstructure. Increase of C content was helpful to increase AF volume fraction and reduce PF(G) and FS volume fraction by increasing super cooling rate for ferrite transformation. Also, Increase of C content up to 0.045wt% made the strength and impact toughness higher by increasing AF volume fraction. The weld metal containing higher C content indicated higher CTOD value. It is because the volume fraction of PF(G) and FS, can play a role as crack initiation site, was reduced. Effect of C on the strength and elongation of weld metal was higher with an increase of Si contents.

Microstructurally Sensitive Fatigue Crack Propagation Behavior (微視組織에 敏感한 疲勞균열進展擧動)

  • 김정규;황돈영;박영조
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.316-325
    • /
    • 1986
  • Characteristics of fatigue crack propagation in martensite-ferrite duel phase steels have been investigated. In low .DELTA.K region, fatigue crack propagation resistance increases with increasing volume fraction of martensite, but the difference of crack propagation resistance resulted from the volume fraction decreases with increasing .DELTA.K. Also, threshold stress intensity factor range .DELTA.K$_{th}$ increases with increasing volume fraction of martensite, But fatigue crack propagation rates of dual-phase steels in terms of .DELTA.K$_{eff}$ are independent to volume fraction of martensite. These phenomena can be explained by the roughness induced crack closure due to crack deflection.n.n.

Numerical Study Of H2O-Cu Nanofluid Using Lattice-Boltzmann Method

  • Taher, M.A.;Li, Kui-Ming;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.53-61
    • /
    • 2010
  • In the present study, a laminar natural convection flow of $H_2O$-Cu nanofluid in a two dimensional enclosure has been investigated using a thermal lattice Boltzmann approach with the Bhatnagar-Gross-Krook (BGK) model. The effect of suspended nanoparticles on the fluid flow and heat transfer process have been studied for different controlling parameters such as particle volume fraction ($\Phi$), Rayleigh number (Ra). For this investigation the Rayleigh number changes from 104 to 106 and volume fraction varied from 0 to 10% with three different particle diameters (dp), say 10 nm, 20 nm and 40 nm. It is shown that increasing the Rayleigh number (Ra) and the volume fraction of nanofluid causes an increase of the effective heat transfer rate in terms of average Nusselt number (Nu) as well as the thermal conductivity of nanofluid. On the other hand, increasing the particle diameter causes the decrease of the heat transfer rate and thermal conductivity. The result of the analysis are compared with experimental and numerical data both for pure and nanofluids and it is seen a relatively good agreement.

Effect of Volume Fraction and Length of Fiber on the Mechanical Properties of Fiber Reinforced Concrete (섬유보강 콘크리트의 역학적 특성에 대한 섬유 체적비와 길이의 영향)

  • Yang, Keun-Hyeok;O, Seung-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.1
    • /
    • pp.43-48
    • /
    • 2008
  • Fifteen concrete specimens were mixed and tested to explore the significance and limitation of appling the polyvinyl alcohol (PVA) fiber and steel fiber with end hook to concrete. Main parameters investigated were volume fraction and length of the fibers. The measured mechanical properties of fiber reinforced concrete are analyzed according to the equivalent fiber amount index explaining the adding amount and length of fibers. Test results showed that compressive strength of fiber reinforced concrete was higher than that of concrete with no fiber by $10{\sim}20%$. The normalized splitting tensile strength and flexural strength of PVA fiber reinforced concrete were similar to those of concrete with no fiber, whereas those of steel fiber reinforced concrete increased with the increase of the equivalent fiber amount index. In particular, much higher ductile behavior was observed in steel fiber reinforced concrete than in PVA reinforced concrete, indicating that the slope of descending branch of load-displacement relationship of steel fiber reinforced concrete decreased with the increase of the volume fraction and length of the fiber.

The Characteristics of Mechanical Properties and Fatigue Crack Propagation of Fire Resistance Steel for Frame Structure (구조용 내화강의 기계적 성질과 피로균열전파 특성에 관한 연구)

  • Kim, Hyeon-Su;Nam, Gi-U;Gang, Chang-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.54-60
    • /
    • 2001
  • This study is to investigate the mechanical properties and the fatigue crack propagation of fire resistance steel for frame structure as the chemical composition was changed by addition of N, B and rolled end temperature was varied. We used two kinds of specimen, the one is parallel and the other is perpendicular to the rolling directions. As rolled end temperature increased, volume fraction of ferrite and pearlite decreased, but volume fraction of baintie and grain size increased. Micro-hardness decreased as rolled end temperature increased, but tensile and yield strength increased. Volume fraction of ferrite and pearlite decreased by addition of N. But volume fraction of bainite, tensile and yield strength increased. Microstructure was changed to martensite by addition of B, and tensile and yield strength increased. Fatigue life of TL direction specimen was shorter than that of LT direction specimen. There was no significant effect to fatigue crack propagation rate by addition of N and changing rolling condition, but fatigue life was increased by addition of B.

Effect of Austenite on the Pitting Corrosion of 202 Stainless Steel with Two Phases of Austenite and Martensite (오스테나이트와 마르텐사이트 2상 조직을 갖는 202 스테인리스강의 공식에 미치는 오스테나이트의 영향)

  • Kim, Jong-Sig;Kim, Young-Hwa;Kim, Hee-Won;Koo, Jeong-Yeup;Sung, Ji-Hyun;Kang, Chang-Yong
    • Journal of Power System Engineering
    • /
    • v.20 no.1
    • /
    • pp.36-41
    • /
    • 2016
  • Effects of austenite on the pitting corrosion in 202 stainless steel with two phase of austenite and martensite were investigated through the electrochemical polarization test. Two phases structures of martensite and austenite were obtained by reversed annealing treatment at the range of $500^{\circ}C-700^{\circ}C$ for 10min. in 70% cold-rolled 202 stainless steel. Volume fraction of reversed austenite has increased rapidly with an increase of annealing temperature. Pitting corrosion has arisen mainly on martensite phase in 202 stainless steel with two phases of austenite and martensite. Pitting current density has decreased with an increase of volume fraction of austenite. Consequently, pitting corrosion at martensite has occurred largely with an increase of volume fraction of austenite. Pitting corrosion was affected by volume fraction of austenite.

Fracture behavior of Thixoformed 357-T5 Semi-solid Al alloys (반응고 357-T5 합금의 파괴 특성)

  • Park, C.;Kim, S.S.;Bae, M.H.;Kang, S.W.;Kwon, Y.N.;Lee, Y.S.;Lee, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.65-69
    • /
    • 2003
  • The effects of microstructural features on the fracture behaviors, including impact, high-cycle fatigue, fatigue and crack propagation, of thixoformed 357-T5 (Al-7%Si-0.6%Mg) alloy were examined. The resistance to impact and high-cycle fatigueof thixoformed 357-T5 tended to improve greatly with increasing solid volume fraction. An almost three-fold increase in impact energy value was, for example, observed with increasing solid volume fraction from 59 to 70%. The improvement in both impact and fatigue properties of thixoformed 357-75 with increasing solid volume fraction in the present study appeared to be related to the magnitude of stress concentration at the interface between primary and eutectic phase, by which the fracture process was largely influenced. Based on the fractographic and micrographic observations, the mechanism associated with the beneficial effect of high solid volume fraction in thixoformed 357-T5 alloy was discussed.

  • PDF

Void Ratio, Compressive Strength and Freezing and Thawing Resistance of Natural Jute Fiber Reinforced Non-Sintering Inorganic Binder Porous Concrete (자연마섬유보강 비소성 무기결합재 다공성 콘크리트의 공극률, 압축강도 및 동결융해저항성 평가)

  • Kim, Hwang Hee;Kim, Chun Soo;Jeon, Ji Hong;Park, Chan Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.2
    • /
    • pp.67-73
    • /
    • 2015
  • This study evaluated the effects of fibers on the void ratio, compressive strength and repeated freezing and thawing resistance of porous vegetation concrete with binder type (non-sintering inorganic binder and blast furnace slag cement) and natural jute fiber volume fraction (0.0 %, 0.1 % and 0.2 %). The natural jute fiber volume fraction affected the void ratio, compressive strength and repeated freezing and thawing resistance. Added of natural jute fiber resulted in improved properties of the void ratio, compressive strength and freezing and thawing resistance. Also, the both compressive strength and freezing and thawing resistance increased with natural jute fiber volume fraction up to 0.1 % and then decreased with fiber volume fraction at 0.2 %.

Numerical investigation on tortuosity of transport paths in cement-based materials

  • Zuo, Xiao-Bao;Sun, Wei;Liu, Zhi-Yong;Tang, Yu-Juan
    • Computers and Concrete
    • /
    • v.13 no.3
    • /
    • pp.309-323
    • /
    • 2014
  • Based on the compositions and structures of cement-based materials, the geometrical models of the tortuosity of transport paths in hardened cement pastes, mortar and concrete, which are associated with the capillary porosity, cement hydration degree, mixture particle shape, aggregate volume fraction and water-cement ratio, are established by using a geometric approach. Numerical simulations are carried out to investigate the effects of material parameters such as water-cement ratio, volume fraction of the mixtures, shape and size of aggregates and cement hydration degree, on the tortuosity of transport paths in hardened cement pastes, mortar and concrete. Results indicate that the transport tortuosity in cement-based materials decreases with the increasing of water-cement ratio, and increases with the cement hydration degree, the volume fraction of cement and aggregate, the shape factor and diameter of aggregates, and the material parameters related to cement pastes, such as the water-cement ratio, cement hydration degree and cement volume fraction, are the primary factors that influence the transport tortuosity of cement-based materials.

Mechanical strength analysis for functionally graded composite plates (경사기능 복합재료 판의 기계적 강도해석)

  • Na, Kyung-Su;Kim, Ji-Hwan
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.66-69
    • /
    • 2005
  • Mechanical strength of functionally graded composite plates that composed of ceramic, functionally graded material and metal layers is investigated using 3-D finite element method. In FGM layer, material properties are assumed to be varied continuously in the thickness direction according to a simple power law distribution in terms of the volume fraction of a ceramic and metal. The 3-D finite element model is adopted by using an IS-node solid element to analyze more accurately the variation of material properties in the thickness direction. Numerical results are compared with those of the previous works. In addition, the displacements, the tensile stresses and the compressive stresses are analyzed for the variation of FGM thickness ratio and volume fraction distribution.Mechanical strength of functionally graded composite plates that composed of ceramic, functionally graded material and metal layers is investigated using 3-D finite element method. In FGM layer, material properties are assumed to be varied continuously in the thickness direction according to a simple power law distribution in terms of the volume fraction of a ceramic and metal. The 3-D finite element model is adopted by using an IS-node solid element to analyze more accurately the variation of material properties in the thickness direction. Numerical results are compared with those of the previous works. In addition, the displacements, the tensile stresses and the compressive stresses are analyzed for the variation of FGM thickness ratio and volume fraction distribution.

  • PDF