• 제목/요약/키워드: Volume Efficiency

검색결과 2,130건 처리시간 0.026초

태양열 및 외기 열원식 히트펌프 시스템 시뮬레이션 (Simulation of Solar and Ambient-air-assisted Heat Pump)

  • 백남춘;박준언;송병하;이진국;김홍제
    • 태양에너지
    • /
    • 제20권4호
    • /
    • pp.17-24
    • /
    • 2000
  • Thermal performance of a SAAHPS (Solar and Ambient-air-assisted Heat Pump System) located in KIER is simulated with TRNSYS 14.2. The SAAHPS is composed of dual evaorators, each of which is used as a solar fluid heat source and an air fluid heat source. Polynomial coefficients data for the SAAHPS is supplied with Frigosoft, a program widely used for heat pump modeling. In general, collector area and storage volume are 2 key parameters in SAAHPS thermal performance. A parametric study is performed in this study to assess sensitivity of collector area and storage volume in SAAHPS. We concluded that firstly collector area and storage volume are the primary variables in SAAHPS thermal performance, secondly COP of SAAHPS is higher than that of conventional heat pumps. Therefore. collector efficiency can be enhanced swith SAAHPS during a heating season.

  • PDF

형상 충전 및 격자 세분화를 이용한 삼차원 자유 표면 유동의 유한 요소 해석 (Three Dimensional Finite Element Analysis of Free Surface Flow Using Filling Pattern Technique and Adaptive Grid Refinement)

  • 김기돈;양동열;정준호
    • 대한기계학회논문집B
    • /
    • 제28권11호
    • /
    • pp.1348-1358
    • /
    • 2004
  • The filling pattern and an adaptive grid refinement based on the finite element method and Eulerian mesh advancement approach have been developed to analyze incompressible transient viscous flow with free surfaces. The governing equation fur flow analysis is Navier-Stokes equation including inertia and gravity effects. The mixed FE formulation and predictor-corrector method are used effectively for unsteady numerical simulation. The flow front surface and the volume inflow rate are calculated using the filling pattern technique to select an adequate pattern among seven filling patterns at each tetrahedral control volume. By adaptive grid refinement, the new flow field that renders better prediction in flow surface shape is generated and the velocity field at the flow front part is calculated more exactly. In this domain the elements in the surface region are made finer than those in the remaining regions for more efficient computation. The collapse of a water dam and the filling of a fluidity spiral have been analyzed. The numerical results have been in good agreement with the experimental results and the efficiency of the adaptive grid refinement and filling pattern techniques have been verified.

물의 T-s 선도 상에서 26 종류의 물성치 작도 및 시스템 해석 프로그램 개발 (Program Development for Drawing of 26 Properties and System Analysis on T-s Diagram of Water or Vapor)

  • 김덕진
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.157-164
    • /
    • 2008
  • The temperature-entropy diagram of water or vapor displays graphically the thermophysical properties, so it is very conveniently used in various thermal systems. On general T-s chart of water, there are temperature, pressure, quality, specific volume, specific enthalpy, specific entropy. However, various state and process values besides above properties can be plotted on T-s diagram. In this study, we developed the software drawing twenty six kinds of properties, that is temperature, pressure, quality, specific volume, specific internal energy, specific enthalpy, specific entropy, specific exergy, exergy ratio, density, isobaric specific heat, isochoric specific heat, ratio of specific heat, coefficient of viscosity, kinematic coefficient of viscosity, thermal conductivity, prandtl number, ion product, static dielectric constant, isentropic exponent, velocity of sound, joule-thomson coefficient, pressure coefficient, volumetric coefficient of expansion, isentropic compressibility, and isothermal compressibility. Also, this software can analyze and print the system values of mass flow rate, volume flow rate, internal energy flow rate, enthalpy flow rate, entropy flow rate, exergy flow rate, heat flow rate, power output, power efficiency, and reversible work. Additionally, this software support the functions such as MS-Power Point.

  • PDF

Optimized Design of Dioxin Analysis for Water Sample

  • Choi, Jaewon;Lee, Jaehee;Kim, Kyoungsim;Kim, Sunheong;Bae, Kyunghee
    • 한국물환경학회지
    • /
    • 제21권3호
    • /
    • pp.219-229
    • /
    • 2005
  • The analytical methods for dioxins in water sample from wastewater to tap water were reviewed. For extraction method, liquid-liquid extraction (LLE) has been widely used, however, this process needs too much time and man power. New approach including solid phase extraction (SPE) is now applicable to large volume of water sample with high extraction efficiency. Column clean up in classical analytical methods were very complex and time consuming procedures during decade. Modifications were tried to decrease solvent and reagents volume. Moreover, use of column connection method has been demonstrated in the environmental matrices. Instrumental configurations also have been improved, in which GC/MS/MS with large volume injection approach can analyze picogram levels. Absolute sensitivities of HRMS increased compared to old versions of double focusing sector type mass spectrometers. Based on these analytical evolutions during last 10 years, we tried to optimize the analytical method for dioxins in water sample from sample extraction to instrumental analysis.

Comparison of Plot Sizes for Forest Inventory in Natural Deciduous Forest In Korea

  • Yim, Jong-Su;Shin, Man Yong
    • 한국산림과학회지
    • /
    • 제95권5호
    • /
    • pp.595-600
    • /
    • 2006
  • The plot design influences the budgets and the precision of forest inventory results. The objective of this study is to determine the efficiency of estimating forest variables such as tree density, basal area, volume, and species richness based on various plot sizes using fixed-area plot sampling in the natural deciduous forest of Pyeong-Chang County, Gang-won Province, Korea. In this study, 108 reference plots were established with a fixed plot size and shape of 0.09 ha ($30m{\times}30m$). In order to determine the optimal plot size for the interest of variables, each sample plot was established using different shapes (square, circle, and rectangle) and was divided into different plot sizes from 100 to $900m^2$. The mean relative difference (MRD) for the sum of the basal area and volume, and tree density per hectare decreased as plot size increased. But the MRD for three variables were only below 13% at the plot size of $500m^2$. Species richness for each reference stand observed ranging from 2 to 15 species, demonstrated highly positive significant relationships with plot size. The minimum plot size for the estimation of tree density, the sum of the BA and volume was determined to be about $400m^2$, whereas the estimation of species richness required a minimum plot size of $500m^2$.

압력실의 크기와 운전 조건에 따른 수격펌프의 성능에 대한 실험적 고찰 (Experimental Study on the Effect of Air Chamber Size and Operation Parameters on the Performance of a Hydraulic Ram Pump)

  • 은골 에농진 에봉 죠오지;홍성구
    • 한국농공학회논문집
    • /
    • 제61권4호
    • /
    • pp.55-61
    • /
    • 2019
  • Motor pumps cannot be used in those areas where electricity is not accessible such as remote rural areas in many African countries. Hydraulic ram pump is one of the solutions for supplying water for irrigation or domestic uses. The hydraulic ram pumps are working based on the water hammer effect for pumping without external power or electricity. This study was conducted to investigate the effect of air chamber volume and operation parameters on the performance of the hydraulic ram pump which was assembled with common plumbing parts. The experimental results showed the volume of the air chamber did not affect the performance such as discharge rate and head. When drive heights were 1.7 and 2.35 m, the maximum discharge heads were up to 7 m and 10 m, respectively. When the air chamber volume was 1 L, discharge rates were 0.23 and 2.12 L/min under the drive heights of 1.7 and 2.35 m, respectively. The average energy efficiency of the hydraulic ram pump assembled in this study was about 60% for all the experimental conditions.

Numerical modeling of concrete conveying capacity of screw conveyor based on DEM

  • Yu, Wenda;Zhang, Ke;Li, Dong;Zou, Defang;Zhang, Shiying
    • Computers and Concrete
    • /
    • 제29권 6호
    • /
    • pp.361-374
    • /
    • 2022
  • On the premise of ensuring that the automatic and quantitative discharging function of concrete conveyors is met, the accuracy of the weight forecast by the mathematical model of the screw conveying volume is improved, and the error of the weight of the concrete parts and the accumulation thickness is reduced. In this paper, the discrete element method (DEM) is used to simulate the macroscopic flow of concrete. Using the concrete discrete element model, the size of the screw conveyor is set, and establish the response model between the influencing factors (process and structure) and the concrete mass flow rate according to the design points of the screw discharging experiment. The nonlinear data fitting method is used to obtain the volumetric efficiency function under the influence of process and structural factors, and the traditional screw conveying volume model is improved. The mass flow rate of concrete predicted by the improved mathematical model of screw conveying volume is consistent with the test results. The model can accurately describe the conveying process of concrete and achieve the purpose of improving the accuracy of forecasting the weight of discharged concrete.

기계 학습 모델을 통해 XGBoost 기법을 활용한 부산 컨테이너 물동량 예측 (Forecasting the Busan Container Volume Using XGBoost Approach based on Machine Learning Model)

  • 웬티프엉타인;조규성
    • 사물인터넷융복합논문지
    • /
    • 제10권1호
    • /
    • pp.39-45
    • /
    • 2024
  • 항만 성능에 대한 정확한 평가는 컨테이너 물동량은 매우 중요한 요소이며, 효과적인 항만 개발 및 운영 전략에 대한 정확한 예측이 필수적이다. 하지만 해양 산업의 급격한 변화로 인해 컨테이너 물동량 예측의 정확성이 향상되기는 어렵다. 이를 해결하기 위해 사물인터넷(IoT)을 이용한 항만 성능에 미치는 영향을 분석하여 부산항의 경쟁력과 효율성을 향상시키기 위해 적용이 필요하다. 이에 본 연구에서는 부산항의 미래 컨테이너 물동량을 예측하기 위한 예측 모델을 개발하는 것을 목표로 이를 통해 항만 관리 기관의 개선된 의사 결정과 항만 생산성을 향상시키는 데 초점을 맞추고 있다. 항만 컨테이너 물동량을 예측하기 위해 본 연구에서는 기계 학습 모델의 Extreme Gradient Boosting (XGBoost) 기법을 도입하였다. XGBoost는 다른 알고리즘에 비해 높은 정확도, 빠른 학습 및 예측 속도,과적합을 방지하고 Feature Importance 제공하는 장점이 돋보인다. 특히 XGBoost는 회귀 예측 모델링에 직접 사용할 수 있어 기존 연구에서 제시된 물동량 예측 모델의 정확도 향상에 도움이 된다. 이를 통해 본 연구는 4.3% MAPE (Mean absolute percenture error) 값으로 제안된 방법이 컨테이너 물동량을 정확하고 신뢰성 있게 예측할 수 있다. 본 연구에서 제시한 방법론을 통해서 부산 컨테이너물동량의 정확성을 높일 수 있을 것으로 판단된다.

Phosphorus Removal in Pilot Plant Using Biofilm Filter Process from Farm Wastewater

  • Shin, Sung-Euy;Choi, Du-Bok;Lee, Choon-Boem;Cha, Wol-Suk
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권4호
    • /
    • pp.325-331
    • /
    • 2006
  • Various environmental conditions affecting total phosphorus removal from farm wastewater in a biofilm filter process were investigated using loess balls and Chromobacterium LEE-38 at a pilot plant. When Chromobacterium LEE-38 was used, the removal efficiency of total phosphorous was approximately 10- or 5-fold higher than that of Acinetobacter CHA-2-14 or Acinetobacter CHA-4-5, respectively. When a loess ball of $11{\sim}14mm$ manufactured at a $960^{\circ}C$ calcining temperature was used, the removal efficiency of total phosphorous was 90.0%. When 70% of the volume fraction was used, the maximum efficiency of total phosphorus removal was 93.1%. Notably, when the initial pH was in the range of 6.0 to 8.0, the maximum removal efficiency of total phosphorus was obtained after 30 days. When the operating temperature was in the range of 30 to $55^{\circ}C$, the maximum removal efficiencies of total phosphorus, 95.6 to 94.6%, were obtained. On the other hand, at operating temperatures below $20^{\circ}C$ or above $40^{\circ}C$, the removal efficiency of total phosphorous decreased. Among the various processes, biofilm filter process A gave the highest removal efficiency of 96.4%. Pilot tests of total phosphorus removal using farm wastewater from the biofilm filter process A were carried out for 60 days under optimal conditions. When Acinetobacter sp. Lee-11 was used, the average removal efficiency in the p-adsorption area was only 32.5%, and the removal efficiencies of chemical oxygen demand (COD) and biological oxygen demand (BOD) were 56.7 and 62.5%, respectively. On the other hand, when Chromobacterium LEE-38 was used, the average removal efficiency was 95.1%, and the removal efficiencies of COD and BOD were 91.3 and 93.2%, respectively.

Takahashi 구름모형에서의 얼음입자 충돌효율 개선 (Implementation of Improved Ice Particle Collision Efficiency in Takahashi Cloud Model)

  • 이한아;염성수
    • 대기
    • /
    • 제22권1호
    • /
    • pp.73-85
    • /
    • 2012
  • The collision efficiency data for collision between graupel or hail particles and cloud drops that take into account the differences of particle density are applied to the Takahashi cloud model. The original setting assumes that graupel or hail collision efficiency is the same as that of the cloud drops of the same volume. The Takahashi cloud model is run with the new collision efficiency data and the results are compared with those with the original. As an initial condition, a thermodynamic profile that can initiate strong convection is provided. Three different CCN concentration values and therefore three initial cloud drop spectra are prescribed that represent maritime (CCN concentration = 300 $cm^{-3}$), continental (1000 $cm^{-3}$) and extreme continental (5000 $cm^{-3}$) air masses to examine the aerosol effects on cloud and precipitation development. Increase of CCN concentration causes cloud drop sizes to decrease and cloud drop concentrations to increase. However, the concentration of ice particles decreases with the increase of CCN concentration because small drops are difficult to freeze. These general trends are well captured by both model runs (one with the new collision efficiency data and the other with the original) but there are significant differences: with the new data, the development of cloud and raindrop formation are delayed by (1) decrease of ice collision efficiency, (2) decrease of latent heat from riming process and (3) decrease of ice crystals generated by ice multiplication. These results indicate that the model run with the original collision efficiency data overestimates precipitation rates.