• Title/Summary/Keyword: Volume Axial

Search Result 371, Processing Time 0.021 seconds

The effect of transverse shear deformation on the post-buckling behavior of functionally graded beams

  • Meksi, Ali;Youzera, Hadj;Sadoun, Mohamed;Abbache, Ali;Meftah, Sid Ahmed;Tounsi, Abdelouahed;Hussain, Muzamal
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.81-89
    • /
    • 2022
  • The purposes of the present work it to study the effect of shear deformation on the static post-buckling response of simply supported functionally graded (FGM) axisymmetric beams based on classical, first-order, and higher-order shear deformation theories. The behavior of postbuckling is introduced based on geometric nonlinearity. The material properties of functionally graded materials (FGM) are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The equations of motion and the boundary conditions derived using Hamilton's principle. This article compares and addresses the efficiency, the applicability, and the limits of classical models, higher order models (CLT, FSDT, and HSDT) for the static post-buckling response of an asymmetrically simply supported FGM beam. The amplitude of the static post-buckling obtained a solving the nonlinear governing equations. The results showing the variation of the maximum post-buckling amplitude with the applied axial load presented, for different theory and different parameters of material and geometry. In conclusion: The shear effect found to have a significant contribution to the post-buckling behaviors of axisymmetric beams. As well as the classical beam theory CBT, underestimate the shear effect compared to higher order shear deformation theories HSDT.

A ramus cortical bone harvesting technique without bone marrow invasion

  • Jeong-Kui Ku;Min-Soo Ghim;Jung Ho Park;Dae Ho Leem
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.49 no.2
    • /
    • pp.100-104
    • /
    • 2023
  • Autogenous bone grafts from the mandibular ramus are a known source of inadequate bone volume scenarios of the residual alveolar ridge. However, the conventional block-type harvesting technique cannot prevent bone marrow invasion, which can cause postoperative complications such as pain, swelling, and inferior alveolar nerve injury. This study aims to suggest a complication-free harvesting technique and present the results of bone grafting and donor sites. One patient received two dental implants with a complication-free harvesting technique that involves creation of ditching holes with a 1 mm round bur. Sagittal, coronal, and axial osteotomies produced grid-type cortical squares using a micro-saw and a round bur to confirm the cortical thickness. The grid-type cortical bone was harvested from the occlusal aspect, and the harvesting was extended through an additional osteotomy on the exposed and remaining cortical bone to prevent bone marrow invasion. The patient did not suffer postoperative severe pain, swelling, or numbness. After 15 months, the harvested site exhibited new cortical bone lining, and the grafted area had healed to a cortico-cancellous complex with functional loading of the implants. Our technique, grid-type cortical bone harvesting without bone marrow invasion, allowed application of autogenous bone without bone marrow invasion to achieve acceptable bone healing of the dental implants and to regenerate the harvested cortical bone.

Combined influence of porosity and elastic foundation parameters on the bending behavior of advanced sandwich structures

  • Malek Hadji;Abdelhakim Bouhadra;Belgacem Mamen;Abderahmane Menasria;Abdelmoumen Anis Bousahla;Fouad Bourada;Mohamed Bourada;Kouider Halim Benrahou;Abdelouahed Tounsi
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • Elastic bending of imperfect functionally graded sandwich plates (FGSPs) laying on the Winkler-Pasternak foundation and subjected to sinusoidal loads is analyzed. The analyses have been established using the quasi-3D sinusoidal shear deformation model. In this theory, the number of unknowns is condensed to only five unknowns using integral-undefined terms without requiring any correction shear factor. Moreover, the current constituent material properties of the middle layer is considered homogeneous and isotropic. But those of the top and bottom face sheets of the graded porous sandwich plate (FGSP) are supposed to vary regularly and continuously in the direction of thickness according to the trigonometric volume fraction's model. The corresponding equilibrium equations of FGSPs with simply supported edges are derived via the static version of the Hamilton's principle. The differential equations of the system are resolved via Navier's method for various schemes of FGSPs. The current study examine the impact of the material index, porosity, side-to-thickness ratio, aspect ratio, and the Winkler-Pasternak foundation on the displacements, axial and shear stresses of the sandwich structure.

Anisotropic Elastic Shear Moduli of Sands Measured by Multi-directional Bender Element Tests in Stress Probe Experiments (사질토의 전단 하중 재하 시 다축 벤더엘리먼트 시험으로 구한 이방적 전단탄성계수)

  • Ko, Young Joo;Jung, Young Hoon;Lee, Choong Hyun;Chung, Choong Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3C
    • /
    • pp.159-166
    • /
    • 2008
  • The stress-strain behavior of soils can usually be regarded as non-linear, while it is also known that the soil exhibits the linear-elastic behavior at pre-failure state (very small strain range, $<10^{-3}%$). This study aims to analyze the variation of anisotropic elastic shear moduli of granular soils in various stress conditions. The stress probe experiments with the triaxial testing device equipped with local strain gages and multi-directional bender elements were conducted. When the stress ratio exceeds the range between -0.5 and 1.5, the elastic shear stiffness in the axial direction deviates from the empirical correlation with current stresses, which indicates that the yielding of soils alters the internal pathway through which the elastic shear wave propagates. The experimental results show that the variation of elastic shear moduli in the horizontal direction closely relates to the volume change of soils.

Experimental Study on Global Buckling of Singly Symmetric FRP Members (일축대칭 FRP 부재의 전체좌굴에 관한 실험적 연구)

  • Lee, Seungsik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.99-106
    • /
    • 2006
  • Due to single symmetry of cross section, T-shaped members are likely to buckle in a flexural-torsional mode when they are subjected to axial compression. Therefore, the flexural-torsional buckling can be regarded as a governing mode of global buckling. An experimental program has been carried out to investigate the flexural-torsional buckling behavior of pultruded T-shaped members. Two types of pultruded members were tested in the experiment, and they were made of either E-glass/vinylester or E-glass/polyester. Lay-up and thickness of reinforcing layers, volume fractions of each constituents in layers, mechanical properties were experimentally determined. Two sets of knife edge fixure were used to simulate simple support condition for flexure and twisting, and the lateral displacements and the angle of twist were measured using three potentiometers. Every specimen buckled in a flexural-torsional mode, and most of the specimens showed post-buckling strength.

Perfusion Impairment in Infantile Autism on Brain SPECT Using Tc-99m ECD : Comparison with MR Findings (유아 자폐증 환아에서의 Tc-99m ECD를 이용한 뇌 단일 광전자 방출 전산화 단층 촬영술상의 관류 저하: 자기 공명 영상과의 비교 분석)

  • Ryu, Young-Hoon;Lee, Jong-Doo;Yoon, Pyeong-Ho;Kim, Dong-Ik;Oh, Young-Taik;Lee, Sun-Ah;Lee, Ho-Bun;Shin, Yee-Jin;Lee, Byung-Hee
    • The Korean Journal of Nuclear Medicine
    • /
    • v.31 no.3
    • /
    • pp.320-329
    • /
    • 1997
  • Neuroanatomic substrate of autism has been the subjects of continuing investigation. Because previous studies had not demonstrated consistent and specific neuroimaging findings in autism and most studies comprised adults and school-aged children, we performed a retrospective review in search of common functional and anatomical abnormalities with brain SPECT using Tc-99m ECD and correlative MRI The patient population was composed of 18 children aged 28 to 89 months(mean age : 55 months) who met the diagnostic criteria of autism as defined in the DSM-IV and CARS. Brain SPECT was performed after intravenous injection of 185-370MBq of Tc-99m ECD using brain dedicated annular crystal gamma camera. MRI was performed in all patients including T1, T2 axial and T1 sagittal sequences. SPECT data were visually assessed. Thirteen patients had abnormal SPECT scan revealing focal areas of decreased perfusion. Decreased perfusion of cerebellar vermis(12/18), cerebellar hemisphere(11/18), thalami(13/18), basal ganglia(4/18), posterior parietal(7/18), and temporal(4/18) area were noted on brain SPECT. Whereas, only 3 patients had abnormal MR findings which were subtle volume loss of parieto-occipital white matter in 3 and mild thinning of posterior body of corpus callosum in 2 and slightly decreased volume of cerebellar vermis in 1. Comparison of the numbers of abnormal findings revealed that regional cerebral blood flow (rCBF) abnormalities seen on SPECT were more numerous than anatomical abnormalities seen on MRI. In conclusion, extensive perfusion impairment involving cerebellum, thalami and parietal lobe were found in this study. SPECT may be more sensitive in reflecting pathophysiology of autism than MRI. However, further studies are mandatory to determine the significance of thalamic and parietal perfusion impairment in autism.

  • PDF

Evaluation of beam delivery accuracy for Small sized lung SBRT in low density lung tissue (Small sized lung SBRT 치료시 폐 실질 조직에서의 계획선량 전달 정확성 평가)

  • Oh, Hye Gyung;Son, Sang Jun;Park, Jang Pil;Lee, Je Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.7-15
    • /
    • 2019
  • Purpose: The purpose of this study is to evaluate beam delivery accuracy for small sized lung SBRT through experiment. In order to assess the accuracy, Eclipse TPS(Treatment planning system) equipped Acuros XB and radiochromic film were used for the dose distribution. Comparing calculated and measured dose distribution, evaluated the margin for PTV(Planning target volume) in lung tissue. Materials and Methods : Acquiring CT images for Rando phantom, planned virtual target volume by size(diameter 2, 3, 4, 5 cm) in right lung. All plans were normalized to the target Volume=prescribed 95 % with 6MV FFF VMAT 2 Arc. To compare with calculated and measured dose distribution, film was inserted in rando phantom and irradiated in axial direction. The indexes of evaluation are percentage difference(%Diff) for absolute dose, RMSE(Root-mean-square-error) value for relative dose, coverage ratio and average dose in PTV. Results: The maximum difference at center point was -4.65 % in diameter 2 cm size. And the RMSE value between the calculated and measured off-axis dose distribution indicated that the measured dose distribution in diameter 2 cm was different from calculated and inaccurate compare to diameter 5 cm. In addition, Distance prescribed 95 % dose($D_{95}$) in diameter 2 cm was not covered in PTV and average dose value was lowest in all sizes. Conclusion: This study demonstrated that small sized PTV was not enough covered with prescribed dose in low density lung tissue. All indexes of experimental results in diameter 2 cm were much different from other sizes. It is showed that minimized PTV is not accurate and affects the results of radiation therapy. It is considered that extended margin at small PTV in low density lung tissue for enhancing target center dose is necessary and don't need to constraint Maximum dose in optimization.

Evaluation of the Modified Hybrid-VMAT for multiple bone metastatic cancer (다중표적 뼈 전이암의 하이브리드 세기변조(modified hybrid-VMAT) 방사선치료계획 유용성 평가)

  • Jung, Il Hun;Cho, Yoon Jin;Chang, Won Suk;Kim, Sei Joon;Ha, Jin Sook;Jeon, Mi Jin;Jung, In Ho;Kim, Jong Dea;Shin, Dong Bong;Lee, Ik Jae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.161-167
    • /
    • 2018
  • Purpose : This study evaluates the usefulness of the Modified Hybrid-VMAT scheme with consideration of background radiation when establishing a treatment plan for multiple bone metastatic cancer including multiple tumors on the same axis. Materials and Methods : The subjects of this study consisted of five patients with multiple bone metastatic cancer on the same axis. The planning target volume(PTV) prescription dose was 30 Gy, and the treatment plan was established using Ray Station(Ray station, 5.0.2.35, Sweden). In the treatment plan for each patient, two or more tumors were set as one isocenter. A volumetric modulated arc therapy(VMAT) plan, a hybrid VMAT(h) plan with no consideration of background radiation, and a modified hybrid VMAT(mh) with consideration of background radiation were established. Then, using each dose volume histogram(DVH), the PTV maximum dose($D_{max}$), mean dose($D_{mean}$), conformity index(CI), and homogeneity index(HI) were compared among the plans. In addition, the organ at risk(OAR) of each treatment site was evaluated, and the total MU(Monitor Unit) and treatment time were also analyzed. Results : The PTV $D_{max}$ values of VMAT, VMAT(h) and VMAT(mh) were 3188.33 cGy, 3526 cGy, and 3285.67 cGy, the $D_{mean}$ values were 3081 cGy, 3252 cGy, and 3094 cGy; the CI values were $1.35{\pm}0.19$, $1.43{\pm}0.12$, and $1.30{\pm}0.06$; the HI values were $1.06{\pm}0.01$, $1.14{\pm}0.06$, and $1.09{\pm}0.02$; and the VMAT(h) OAR value was increased 3 %, and VMAT(mh) OAR value was decreased 18 %, respectively. Furthermore, the mean MU values were 904.90, 911.73, and 1202.13, and the mean beam on times were $128.67{\pm}10.97$, $167.33{\pm}7.57$, and $190.33{\pm}4.51$ respectively. Conclusions : Applying Modified Hybrid-VMAT when treating multiple targets can prevent overdose by correcting the overlapping of doses. Furthermore, it is possible to establish a treatment plan that can protect surrounding normal organs more effectively while satisfying the inclusion of PTV dose. Long-term follow-up of many patients is necessary to confirm the clinical efficacy of Modified Hybrid-VMAT.

  • PDF

4-Dimensional dose evaluation using deformable image registration in respiratory gated radiotherapy for lung cancer (폐암의 호흡동조방사선치료 시 변형영상정합을 이용한 4차원 선량평가)

  • Um, Ki Cheon;Yoo, Soon Mi;Yoon, In Ha;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.83-95
    • /
    • 2018
  • Purpose : After planning the Respiratory Gated Radiotherapy for Lung cancer, the movement and volume change of sparing normal structures nearby target are not often considered during dose evaluation. This study carried out 4-D dose evaluation which reflects the movement of normal structures at certain phase of Respiratory Gated Radiotherapy, by using Deformable Image Registration that is well used for Adaptive Radiotherapy. Moreover, the study discussed the need of analysis and established some recommendations, regarding the normal structures's movement and volume change due to Patient's breathing pattern during evaluation of treatment plans. Materials and methods : The subjects were taken from 10 lung cancer patients who received Respiratory Gated Radiotherapy. Using Eclipse(Ver 13.6 Varian, USA), the structures seen in the top phase of CT image was equally set via Propagation or Segmentation Wizard menu, and the structure's movement and volume were analyzed by Center-to Center method. Also, image from each phase and the dose distribution were deformed into top phase CT image, for 4-dimensional dose evaluation, via VELOCITY Program. Also, Using $QUASAR^{TM}$ Phantom(Modus Medical Devices) and $GAFCHROMIC^{TM}$ EBT3 Film(Ashland, USA), verification carried out 4-D dose distribution for 4-D gamma pass rate. Result : The movement of the Inspiration and expiration phase was the most significant in axial direction of right lung, as $0.989{\pm}0.34cm$, and was the least significant in lateral direction of spinal cord, as -0.001 cm. The volume of right lung showed the greatest rate of change as 33.5 %. The maximal and minimal difference in PTV Conformity Index and Homogeneity Index between 3-dimensional dose evaluation and 4-dimensional dose evaluation, was 0.076, 0.021 and 0.011, 0.0 respectfully. The difference of 0.0045~2.76 % was determined in normal structures, using 4-D dose evaluation. 4-D gamma pass rate of every patients passed reference of 95 % gamma pass rate. Conclusion : PTV Conformity Index was more significant in all patients using 4-D dose evaluation, but no significant difference was observed between two dose evaluations for Homogeneity Index. 4-D dose distribution was shown more homogeneous dose compared to 3D dose distribution, by considering the movement from breathing which helps to fill out the PTV margin area. There was difference of 0.004~2.76 % in 4D evaluation of normal structure, and there was significant difference between two evaluation methods in all normal structures, except spinal cord. This study shows that normal structures could be underestimated by 3-D dose evaluation. Therefore, 4-D dose evaluation with Deformable Image Registration will be considered when the dose change is expected in normal structures due to patient's breathing pattern. 4-D dose evaluation with Deformable Image Registration is considered to be a more realistic dose evaluation method by reflecting the movement of normal structures from patient's breathing pattern.

  • PDF

A Biomechanical Study on the Various Factors of Vertebroplasty Using Image Analysis and Finite Element Analysis (의료영상 분석과 유한요소법을 통한 추체 성형술의 다양한 인자들에 대한 생체 역학적 효과 분석)

  • 전봉재;권순영;이창섭;탁계래;이권용;이성재
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.171-182
    • /
    • 2004
  • This study investigates the biomechanical efficacies of vertebroplasty which is used to treat vertebral body fracture with bone cement augmentation for osteoporotic patients using image and finite element analysis. Simulated models were divided into two groups: (a) a vertebral body, (b) a functional spinal unit(FSU). For a vertebral body model, the maximum axial displacement was investigated under axial compression to evaluate the effect of structural integrity. The stiffness of each FE model simulated was normalized by the stiffness of intact model. In the case of FSU model, 3 types of compression fractures were formulated to assess the influence on spinal curvature changes. The FSU models were loaded under compressive pressure to calculate the change of spinal curvature. The results according to the various factors suggest that vertebroplasty has the biomechanical efficacy of the increment of structural reinforcement in a patient who has relatively high level of BMD and a patient with the amount of 15%, PMMA injection of the cancellous bone volume. The spinal curvatures after compression fracture simulation vary from 9$^{\circ}$ to 17$^{\circ}$ of kyphosis compared to that the spinal curvature of normal model was -2.8$^{\circ}$ of lordosis. These spinal curvature changes cause the severe spinal deformity under the same loading. As the degree of compressive fracture increases the spinal deformity also increases. The results indicate that vertebroplasty has the increasing effect of the structural integrity regardless of the amount of PMMA or BMD and the restoration of decreased vertebral body height may be an important factor when the compressive fracture caused the significant height loss of vertebral body.