• Title/Summary/Keyword: Volume

Search Result 27,538, Processing Time 0.053 seconds

The Effects of Interferential Current Therapy on Blood Flow in upper limbs (간섭 전류 자극이 상지 혈류변화에 미치는 영향)

  • Park Rae-joon;Park Young-han
    • The Journal of Korean Physical Therapy
    • /
    • v.15 no.4
    • /
    • pp.140-150
    • /
    • 2003
  • The purpose of study was to compare change of blood volume on upper limb of stimulus site on interferential current therapy. Twenty university student(twelve females. eight males :mean aged 23.08) with health condition participated this study MP150 system(biopac system) was used to measured blood volume. PPG senser was located thrum finger end The obtain result are as follows. 1. The result of this study were following that stimulate time blood volume were significantly increased sympathetic stimulation group compared with muscle stimulation group(p<.05). 2. The result of this study were following that stimulate time blood volume were significantly increased sympathetic stimulation group compared with muscle stimulation group(p<.05). 3. The result of this study were following that sympathetic stimulation group were significantly increased stimulate time blood volume compared with stimulate time blood volume(p<.05). 4. The result of this study were following that muscle stimulation group were significantly increased stimulate time blood volume compared with stimulate time blood volume(p<.05).

  • PDF

Bounding volume estimation algorithm for image-based 3D object reconstruction

  • Jang, Tae Young;Hwang, Sung Soo;Kim, Hee-Dong;Kim, Seong Dae
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.2
    • /
    • pp.59-64
    • /
    • 2014
  • This paper presents a method for estimating the bounding volume for image-based 3D object reconstruction. The bounding volume of an object is a three-dimensional space where the object is expected to exist, and the size of the bounding volume strongly affects the resolution of the reconstructed geometry. Therefore, the size of a bounding volume should be as small as possible while it encloses an actual object. To this end, the proposed method uses a set of silhouettes of an object and generates a point cloud using a point filter. A bounding volume is then determined as the minimum sphere that encloses the point cloud. The experimental results show that the proposed method generates a bounding volume that encloses an actual object as small as possible.

Forecasting Model of Container Transshipment Traffic Volume in Northeast Asia (동북아시아 환적물동량 예측모델 연구)

  • Lee, Byoung-Chul;Kim, Yun-Bae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.4
    • /
    • pp.297-303
    • /
    • 2011
  • Major ports in Northeastern Asia engage in fierce competition to attract transshipment traffic volume. Existing time series analyses for analyzing port competition relationships examine the types of competition and relations through the signs of coefficients in cointegration equations using the transshipment traffic volume results. However, there are cases for which analyzing competing relationships is not possible based on the results of the transshipment traffic volume data differences and limitations in the forecasting of traffic volume. Accordingly, we used the Lotka-Volterra (L-V) model,also known as the ecosystem competitive relation model, to analyze port competition relations for the long-term forecast of South Korean transshipment traffic volume.

The Interaction of Vortex and Premixed Flame with Consideration of Volume Expansion Effect (체적팽창효과를 고려한 예혼합화염과 와동의 상호작용에 관한 연구)

  • Chung, Eui-Heon;Kwon, Se-jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.12
    • /
    • pp.1669-1680
    • /
    • 1998
  • A method is developed to include the effect of volume expansion in the description of the flame dynamics using G-equation. Line volume-source is used to represent the effect of the exothermic process of combustion with source strength assigned by the density difference between the burned and the unburned region. The present model provides good agreement with the experimental results. Including volume expansion, the flow field is adjusted to accommodate the increased volume flow rate which crossing the flame front and the result predicts the same behavior of measured velocity field qualitatively. The effect of increasing volume expansion does not change the initial growth rate of flame area but increase the residence time. Consequently this effect increases the maximum area of flame front. The flame propagation in varying flow field due to volume expansion provides a promising way to represent the wrinkled turbulent premixed flames in a numerically efficient manner.

A Novel Volume Hologram Encryption Using Complementary Data and Binary Amplitude Mask (상보 데이터와 이진 진폭 마스크를 이용한 새로운 체적 홀로그램 암호화)

  • Kim, Hyun;Kim, Do-Hyung;Lee, Yeon-H.
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.2
    • /
    • pp.143-149
    • /
    • 2005
  • In this paper we propose a novel volume hologram encryption system with binary amplitude masks rather than phase masks, in which volume holograms can be securely recorded against the attacks by a third party. In our system, the encryption is done by multiplexing two volume holograms in such a way that an original binary data page is first stored as a volume hologram by interference with a binary amplitude mask and then the complementary data page is stored as another volume hologram by interference with the complementary binary amplitude mask over the first hologram. The operation principle of our system is explained with the well-known theory of recording and reading a volume hologram in a photorefractive material and the experimental results are presented. Experimental data show that our encryption system is protected from blind decryptions by randomly-generated incorrect amplitude masks.

  • PDF

Use of the Centroid Method to Estimate Volumes of Japanese Red Cedar Trees in Southern Korea

  • Coble, D. W.;Lee, Young-Jin
    • The Korean Journal of Ecology
    • /
    • v.26 no.3
    • /
    • pp.123-127
    • /
    • 2003
  • Cubic-meter volumes estimated from two proxy taper functions were compared to observed volumes of Japanese red cedar trees (Cryptomeria japonica D. Don) to evaluate accuracy and precision in the centroid method. Centroid volume estimates were also compared to volume estimates from existing whole-tree volume equations developed for another geographic region. This study found that one proxy function produced unbiased volume estimates while the other was biased. Volume estimates from the whole-tree equations were also biased. However, the volume estimates from the whole-tree equations were more precise than those from the centroid method. These results support previous studies that the centroid method can produce reliable volumes of trees when no other reliable volume equations exist.

Volume Rendering Using Multi-Textures (Multi-Textures를 이용한 Volume Rendering)

  • 박재영;이병일;최흥국
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.169-172
    • /
    • 2000
  • Direct volume rendering has yet been restricted to high-end graphic workstations and special-purpose hardware, due to the large amount of trilinear interpolation, that are necessary to obtain high image quality. In this paper, we implemented the volume rendering techniques using the 2D-texture at the environment of standard PC hardware. In addition, we show how multi-texturing capabilities of modern PC graphics board are enable to volume rendering. Besides using extended OpenGL function, we improved pixel operations and rendering capacity.

  • PDF

Local nanofiller volume concentration effect on elastic properties of polymer nanocomposites

  • Shin, Hyunseong;Han, Jin-Gyu;Chang, Seongmin;Cho, Maenghyo
    • Multiscale and Multiphysics Mechanics
    • /
    • v.1 no.1
    • /
    • pp.65-76
    • /
    • 2016
  • In this study, an influence of local variation of nanoparticulate volume fraction on the homogenized elastic properties is investigated. It is well known that interface effect is dependent on the radius and volume fraction of reinforced nanofillers. However, there is no study on the multiscale modeling and analysis of polymer nanocomposites including polydispersed nanoparticles with consideration of interphase zone, which is dependent on the volume fraction of corresponding nanoparticles. As results of numerical examples, it is confirmed that an influence of local variation of nanoparticulate volume fraction should be considered for non-dilute system such as cluster of nanoparticles. Therefore representative volume element analysis is conducted by considering local variation of nanoparticle volume fraction in order to analyze the practical size of cell including hundreds of nanoparticles. It is expected that this study could be extended to the multiparticulate nanocomposite systems including polydispersed nanoparticles.

Heterogeneous Chain-mail Model for CPU-based Volume Deformation (CPU 기반의 볼륨 변형을 위한 다형질 Chainmail 모델)

  • Lee, Sein;Kye, Heewon
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.7
    • /
    • pp.759-769
    • /
    • 2019
  • Since a surgery simulation should be able to represent the internal structure of the human body, it is advantageous to adopt volume based techniques rather than polygon based techniques. However, the volume based techniques induce large computation to deform heterogeneous volume datasets such as bones and muscles. In this study, we propose a new method to deform volume data using multi-core CPUs. By improving previous studies, the proposed method minimizes unnecessary propagation operations. Moreover, we propose an efficient task-partitioning method for volume deformation using multi-core CPUs. As a result, we can simulate the deformation of heterogeneous volume data at an interactive speed without special hardware.

TF color mapping for direct volume rendering with CNN (직접 볼륨 렌더링을 위한 CNN 기반 TF 색상 매핑)

  • Kim, Seokyeon;Jang, Yun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.27 no.5
    • /
    • pp.25-32
    • /
    • 2021
  • Direct Volume Rendering(DVR) renders by projecting data into a two-dimensional space without calculating the volume surfaces. In DVR, the transfer function(TF) assigns light properties such as color and transparency to the volume. However, it takes a long time for beginners to manipulate TF to understand volume data and assign colors. This paper proposes an approach to colorize the volume using sample images for intuitive volume rendering. We also discuss color extraction methods using K-means clustering.