• Title/Summary/Keyword: Voltage-controlled frequency tuning

Search Result 121, Processing Time 0.047 seconds

A stable U-band VCO in 65 nm CMOS with -0.11 dBm high output power

  • Lee, Jongsuk;Moon, Yong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.4
    • /
    • pp.437-444
    • /
    • 2015
  • A high output power voltage controlled oscillator (VCO) in the U-band was implemented using a 65 nm CMOS process. The proposed VCO used a transmission line to increase output voltage swing and overcome the limitations of CMOS technologies. Two varactor banks were used for fine tuning with a 5% frequency tuning range. The proposed VCO showed small variation in output voltage and operated at 51.55-54.18 GHz. The measured phase noises were -51.53 dBc/Hz, -91.84 dBc/Hz, and -101.07 dBc/Hz at offset frequencies of 10 kHz, 1 MHz, and 10 MHz, respectively, with stable output power. The chip area, including the output buffer, is $0.16{\times}0.16mm^2$ and the maximum output power was -0.11 dBm. The power consumption was 33.4 mW with a supply voltage of 1.2-V. The measured $FOM_P$ was -190.8 dBc/Hz.

Wideband and tow Phase Noise Voltage Controlled Oscillator Using a Broadside Coupled Microstrip Resonator (상하 결합 마이크로스트립 공진기를 이용한 광대역 저 위상 잡음 전압제어발진기)

  • Moon, Seong-Mo;Lee, Moon-Que
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.4
    • /
    • pp.46-52
    • /
    • 2009
  • In this paper, a novel VCO (Voltage Controlled Oscillator) structure is proposed to achieve the characteristic of low phase noise and a wide frequency tuning range. The proposed scheme adopts an impedance transforming technique to change a series resonance into a parallel resonance for maximizing the susceptance slope parameter. The manufactured VCO shows a frequency tuning bandwidth of 600MHz from 10.1GHz to 10.7GHz with a tuning voltage varying from 0 to 9V, an excellent phase noise below -119dBc/Hz@1MHz offset. The harmonic suppression is measured above 28dB.

  • PDF

Low-Power Wide-Tuning Range Differential LC-tuned VCO Design in Standard CMOS

  • Kim, Jong-Min;Woong Jung
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.21-24
    • /
    • 2002
  • This paper presents a fully integrated, wide tuning range differential CMOS voltage-controlled oscillator, tuned by pMOS-varactors. VCO utilizing a novel tuning scheme is reported. Both coarse digital tuning and fine analog tuning are achieved using pMOS-varactors. The VCO were implemented in a 0.18-fm standard CMOS process. The VCO tuned from 1.8㎓ to 2.55㎓ through 2-bit digital and analog input. At 1.8V power supply voltage and a total power dissipation of 8mW, the VCO features a phase noise of -126㏈c/㎐ at 3㎒ frequency offset.

  • PDF

A design of voltage controlled hair-pin resonator oscillator for the use of clock precovery/data regeneration circuit in 10 Gbps SDH fiber optic systems (10 Gbps SDH 광전송시스템을 위한 클럭보상/데이타 재생회로용 전압제어 hair-pin 공진 발진기의 설계)

  • 연영호;이수열;이주열;유태완;박문수;홍의석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.5
    • /
    • pp.1304-1316
    • /
    • 1996
  • In this paper, A VCO(Voltage Controlled Oscillator) in use of clock recovery/data regeneration circuit for 10 Gbps fiber optic receivers was developed. The improved hair-pin resonator with a parallel coupled lines, which has been applied to microstrip filters, was used as a resonance part. As a frequcncy tuning device by substituting 3-terminalMESFET vaaractor for varactor diode, an MMIC manufacturing process will be simplified. Since a hair-pin resonator is planar type compared to the dielectric resonator and has a relatively flat reactance verus frequency, it will be favorable to apply a hair-pin resonator to an MMIC, in addition wideband frequency tuning range is able to be obtained.

  • PDF

Wide-Band Fine-Resolution DCO with an Active Inductor and Three-Step Coarse Tuning Loop

  • Pu, Young-Gun;Park, An-Soo;Park, Joon-Sung;Moon, Yeon-Kug;Kim, Su-Ki;Lee, Kang-Yoon
    • ETRI Journal
    • /
    • v.33 no.2
    • /
    • pp.201-209
    • /
    • 2011
  • This paper presents a wide-band fine-resolution digitally controlled oscillator (DCO) with an active inductor using an automatic three-step coarse and gain tuning loop. To control the frequency of the DCO, the transconductance of the active inductor is tuned digitally. To cover the wide tuning range, a three-step coarse tuning scheme is used. In addition, the DCO gain needs to be calibrated digitally to compensate for gain variations. The DCO tuning range is 58% at 2.4 GHz, and the power consumption is 6.6 mW from a 1.2 V supply voltage. An effective frequency resolution is 0.14 kHz. The phase noise of the DCO output at 2.4 GHz is -120.67 dBc/Hz at 1 MHz offset.

Low Voltage CMOS LC VCO with Switched Self-Biasing

  • Min, Byung-Hun;Hyun, Seok-Bong;Yu, Hyun-Kyu
    • ETRI Journal
    • /
    • v.31 no.6
    • /
    • pp.755-764
    • /
    • 2009
  • This paper presents a switched self-biasing and a tail current-shaping technique to suppress the 1/f noise from a tail current source in differential cross-coupled inductance-capacitance (LC) voltage-controlled oscillators (VCOs). The proposed LC VCO has an amplitude control characteristic due to the creation of negative feedback for the oscillation waveform amplitude. It is fabricated using a 0.13 ${\mu}m$ CMOS process. The measured phase noise is -117 dBc/Hz at a 1 MHz offset from a 4.85 GHz carrier frequency, while it draws 6.5 mA from a 0.6 V supply voltage. For frequency tuning, process variation, and temperature change, the amplitude change rate of the oscillation waveform in the proposed VCO is 2.1 to 3.2 times smaller than that of an existing VCO with a fixed bias. The measured amplitude change rate of the oscillation waveform for frequency tuning from 4.55 GHz to 5.04 GHz is 131 pV/Hz.

L-band Voltage Controlled Oscillator for Ultra-Wideband System Applications (초광대역 응용 시스템을 위한 L밴드 전압제어발진기 설계)

  • Koo Bonsan;Shin Guem-Sik;Jang Byung-Jun;Ryu Keun-Kwan;Lee Moon-Que
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.9
    • /
    • pp.820-825
    • /
    • 2004
  • In this paper an octave tuning voltage controlled oscillator which is used in set-top TV tuner was designed. Oscillation frequency range is 0.9 GHz~2.2 GHz with 1.3 GHz bandwidth. By using 4 varactor diodes in base and emitter of transistor, wide-band tuning, sweep linearity and low phase noise could be achieved. Designed VCO requires a tuning voltage of 0 V ~ 20 V and DC consumption of 10 V and 15 mA. Designed VCO exhibits an output power of 5.3 dBm $\pm$1.1 dB and a phase noise below -94.8 dBc/Hz @ 10 kHz over the entire frequency range. The sweep linearity shows 65 MHz/V with a deviation of $\pm$10 MHz.

10-GHz Band Voltage Controlled Oscillator (VCO) MMIC for Motion Detecting Sensors

  • Kim, Sung-Chan;Kim, Yong-Hwan;Ryu, Keun-Kwan
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.1
    • /
    • pp.12-16
    • /
    • 2018
  • In this work, a voltage controlled oscillator (VCO) monolithic microwave integrated circuit (MMIC) was demonstrated for 10-GHz band motion detecting sensors. The VCO MMIC was fabricated using a $2-{\mu}m$ InGap/GaAs HBT process, and the tuning of the oscillation frequency is achieved by changing the internal capacitance in the HBT, instead of using extra varactor diodes. The implemented VCO MMIC has a micro size of $500{\mu}m{\times}500{\mu}m$, and demonstrates the value of inserting the VCO into a single chip transceiver. The experimental results showed that the frequency tuning characteristic was above 30 MHz, with the excellent output flatness characteristic of ${\pm}0.2dBm$ over the tuning bandwidth. And, the VCO MMIC exhibited a phase noise characteristic of -92.64 dBc/Hz and -118.28 dBc/Hz at the 100 kHz and 1 MHz offset frequencies from the carrier, respectively. The measured values were consistent with the design values, and exhibited good performance.

Broadband VCO Using Electronically Controlled Metamaterial Transmission Line Based on Varactor-Loaded Split-Ring Resonator (Varactor-Loaded Split-Ring Resonator(VLSRR) 기반의 가변 Metamaterial 전송 선로를 이용한 광대역 전압 제어 발진기)

  • Choi, Jae-Won;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.11
    • /
    • pp.54-59
    • /
    • 2007
  • In this paper, broadband voltage-controlled oscillator (VCO) using electronically controlled metamaterial transmission line based on varactor-loaded split-ring resonator (VLSRR) is presented. First, it is demonstrated that VLSRR coupled to microstrip line can lead to metamaterial transmission line with tuning capability. The negative effective permeability is provided by the VLSRR in a narrow band above the resonant frequency, which can be bias controlled by virtue of the presence of varactor diodes. The VCO with 1.8 V power supply has phase noise of $-108.84\;{\sim}\;-106.84\;dBc/Hz$ @ 100 Hz in the tuning range, $5.47\;{\sim}\;5.84\;GHz$. The figure of merit (FOM) called power-frequency-tuning-normalized (PFTN) is 20.144 dB.

Study on Improving the Phase Noise of Broadband Voltage-Controlled Oscillator

  • Go, Min-Ho;Kim, Hyoung-Joo
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.3
    • /
    • pp.191-193
    • /
    • 2016
  • This paper proposes a voltage-controlled oscillator (VCO) that has broadband turning and low-level of phase noise characteristics. Due to the micro-strip line resonant circuit with a low Q value, which is applied to the broadband tuning range, the depreciated phase noise performance is compensated by restraining the harmonics of the oscillating frequency. The VCO was designed according to the proposed structure as well as the conventional structure, and the superiority of the proposed structure was verified through its simulation, fabrication, and measurement.