Broadband VCO Using Electronically Controlled Metamaterial Transmission Line Based on Varactor-Loaded Split-Ring Resonator

Varactor-Loaded Split-Ring Resonator(VLSRR) 기반의 가변 Metamaterial 전송 선로를 이용한 광대역 전압 제어 발진기

  • Choi, Jae-Won (Information and Telecommunication Engineering, Soongsil University) ;
  • Seo, Chul-Hun (Information and Telecommunication Engineering, Soongsil University)
  • 최재원 (숭실대학교 정보통신전자공학부) ;
  • 서철헌 (숭실대학교 정보통신전자공학부)
  • Published : 2007.11.25

Abstract

In this paper, broadband voltage-controlled oscillator (VCO) using electronically controlled metamaterial transmission line based on varactor-loaded split-ring resonator (VLSRR) is presented. First, it is demonstrated that VLSRR coupled to microstrip line can lead to metamaterial transmission line with tuning capability. The negative effective permeability is provided by the VLSRR in a narrow band above the resonant frequency, which can be bias controlled by virtue of the presence of varactor diodes. The VCO with 1.8 V power supply has phase noise of $-108.84\;{\sim}\;-106.84\;dBc/Hz$ @ 100 Hz in the tuning range, $5.47\;{\sim}\;5.84\;GHz$. The figure of merit (FOM) called power-frequency-tuning-normalized (PFTN) is 20.144 dB.

본 논문에서는 varactor-loaded split-ring resonator (VLSRR)를 기반으로 한 가변 metamaterial 전송 선로를 이용한 광대역 전압 제어 발진기를 제안하였다. 우선, 마이크로스트립 라인에 결합된 VLSRR이 주파수 조절 특성을 갖는 metamaterial 전송선로를 만들 수 있음을 증명하였다. 음의 유효 투자율은 VLSRR에 의해 공진 주파수 상에서 협대역으로 얻어지는데, 버랙터 다이오드들의 연결을 통해 주파수가 조절될 수 있다. 1.8 V의 공급 전압을 갖는 전압 제어 발진기는 주파수 조절 범위 $5.407\;{\sim}\;5.84\;GHz$에서 $-108.84\;{\sim}\;-105.5\;dBc/Hz$ @ 100 kHz의 위상 잡음 특성을 얻는다. Power-frequency-tuning-normalized (PFTN)이라고 불리우는 figure of merit (FOM)은 20.144 dB이다.

Keywords

References

  1. H. Kim, S. Ryu, Y. Chung, J. Choi, and B. Kim, 'A Low Phase-Noise CMOS VCO with Harmonic Tuned LC Tank,' IEEE Transactions on Microwave Theory and Technique, vol. 54, no. 7, pp. 2917-2924, July 2006 https://doi.org/10.1109/TMTT.2006.877439
  2. V. G. Veselago, 'The electrodynamics of substances with simultaneously negative values of $\varepsilon$ and $\mu$,” Sov. Phys.-Usp., vol. 10, pp. 509-514, January-February 1968 https://doi.org/10.1070/PU1968v010n04ABEH003699
  3. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, 'Extremely low frequency plasmons in metallic microstructures,' Phys. Rev. Lett., vol. 76, no. 25, pp. 4773-4776, June 1996 https://doi.org/10.1103/PhysRevLett.76.4773
  4. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, 'Magnetism from conductors and enhanced nonlinear phenomena,' IEEE Transactions on Microwave Theory Techniques, vol. 47, pp. 2075-2084, November 1999 https://doi.org/10.1109/22.798002
  5. I. Gil, J. Bonache, J. G. Garcia, and F. Martin, 'Tunable Metamaterial Transmission Lines Based on Varactor-Loaded Split-Ring Resonators,' IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 6, June 2006
  6. F. Falcone, T. Lopetegi, J. D. Baena, R. Margues, F. Martin, and M. Sorolla, 'Effective Negative-$\varepsilon$ Stopband Microstrip Lines Based on Complementary Split Ring Resonators,' IEEE Microwave and Wireless Components Letters, vol. 14, no. 6, June 2004
  7. J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. G. Garcia, I. Gil, M. F. Portillo, and M. Sorolla, 'Equivalent-Circuit Models for Split-Ring Reso- nators and Complementary Split-Ring Resona- tors Coupled to Planar Transmission Lines,' IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 4, April 2005
  8. D. Ham, A. Hajimiri, 'Concepts and Methods in Optimization of Integrated LC VCOs,' IEEE Journal of solid-state circuits, vol. 36, no. 6, pp. 896-909, June 2001 https://doi.org/10.1109/4.924852