• Title/Summary/Keyword: Voltage-Drive Mode

Search Result 142, Processing Time 0.023 seconds

A Switching Technique for Common Mode Voltage Reduction of PWM-Inverter Induction Motor Drive System Using TMS320F240 (TMS320F240을 이용한 PWM 인버터 유도전동기 구동 시스템의 전도노이즈 저감을 위한 스위칭 기법)

  • 박규현;김이훈;원충연;김규식;최세완;함년근
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.89-97
    • /
    • 2003
  • High frequency common mode voltage produced by PWM inverter fed Induction motor is a major cause of conducted EMI, creation motor ground currents, bearing currents and other harmful products. The zero switching states of inverter control invoke large in comparison with the non-zero switching state of Inverter control. We proposed a common mode voltage reduction method based on sinusoidal PWM technique. PWM signal are generated by comparing respective sinusoidal reference signal with three triangular carrier wave displaced of 120$^{\circ}$. Simulation and experimenta1 result show that common mode voltages in the proposed PWM technique are reduced by approximate 66% more than conventional FWM technique.

EMI Noise Reduction with New Active Zero State PWM for Integrated Dynamic Brake Systems

  • Baik, Jae-Hyuk;Yun, Sang-Won;Kim, Dong-Sik;Kwon, Chun-Ki;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.923-930
    • /
    • 2018
  • Based on the application of an integrated dynamic brake (IDB) system that uses a PWM inverter fed-AC motor drive to operate the piston, a new active zero state PWM (AZSPWM) is proposed to improve the stability and reliability of the IDB system by suppressing the conducted electro-magnetic interference (EMI) noise under a wide range of load torque. The new AZSPWM reduces common-mode voltage (CMV) by one-third when compared to that of the conventional space vector PWM (CSVPWM). Although this method slightly increases the output current ripple by reducing the CMV, like the CSVPWM, it can be used within the full range of the load torque. Further, unlike other reduced common-mode voltage (RCMV) PWMs, it does not increase the switching power loss. A theoretical analysis is presented and experiments are performed to demonstrate the effectiveness of this method.

An Active Cancellation Method for the Common Mode Current of the Three-Phase Induction Motor Drives (3상 유도전동기 구동장치의 동상모드 전류 능동 제거법)

  • Uzzaman, Tawfique;Kim, Unghoe;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.96-97
    • /
    • 2019
  • Pulse Width Modulation (PWM) is a widely adopted technique to drive the motor using the voltage source inverters. Since they generate high frequency Common Mode (CM) Voltage, a high shaft voltage in induction motor is induced which leads to parasitic capacitive currents causing adverse effects such as premature deterioration of ball bearings and high levels of electromagnetic emissions. This paper presents an Active Cancellation Circuit (ACC) which can significantly reduce the CM voltage hence the common mode current in the three phase induction motor drives. In the proposed method the CM voltage is detected by the capacitors and applied to the frame of the motor to cancel the CM voltage hence the CM current. Unlike the conventional methods the proposed method does not insert the transformer in between the inverter and motor, a high power rating three phase transformer is not required and no losses associated with it. In addition the proposed method is applicable to any kind of PWM motor drives regardless of their PWM methods. The effectiveness of the proposed method is proved by the experiments with a three phase induction motor (1.1kW 415V/60Hz) combined with a three phase voltage source inverter modulated by the Space Vector Modulation (SVM).

  • PDF

Individual DC Voltage Balancing Method at Zero Current Mode for Cascaded H-bridge Based Static Synchronous Compensator

  • Yang, Zezhou;Sun, Jianjun;Li, Shangsheng;Liao, Zhiqiang;Zha, Xiaoming
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.240-249
    • /
    • 2018
  • Individual DC voltage balance problem is an inherent issue for cascaded H-bridge (CHB) based converter. When the CHB-based static synchronous compensator (STATCOM) is operating at zero current mode, the software-based individual DC voltage balancing control techniques may not work because of the infinitesimal output current. However, the different power losses of each cell would lead to the individual DC voltages unbalance. The uneven power losses on the local supplied cell-controllers (including the control circuit and drive circuit) would especially cause the divergence of individual DC voltages, due to their characteristic as constant power loads. To solve this problem, this paper proposes an adaptive voltage balancing module which is designed in the cell-controller board with small size and low cost circuits. It is controlled to make the power loss of the cell a constant resistance load, thus the DC voltages are balanced in zero current mode. Field test in a 10kV STATCOM confirms the performance of the proposed method.

New Overmodulation strategy for Propulsion system of the Light Rail Transit (경량전철용 추진제어장치의 새로운 과변조 기법)

  • Lee, Eun-Kyu;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.194-199
    • /
    • 2003
  • The traction drive system for the urban transit Rubber-tire system is described in this paper. To control the magnitude and frequency of the output voltage of induction motor transiently, the vector control strategy is generally used. But in case of the traction drive system for the railway vehicle, it is difficult to use the vector control caused by the one-pulse mode in the high speed region. Therefore, this paper proposes the control strategy combined the vector control in the low speed region and the slip frequency control in the high speed region. And also, the overmodulation PWM method is discussed to make the change to the one-pulse mode softly. The performance of the Proposed traction drive system is verified by the MATLAB simulation results.

  • PDF

A novel indirect rotor position sensing method to improve the performance of sensorless drive for brushless DC motors (브러시리스 직류 전동기 센서리스 드라이브의 성능 향상을 위한 새로운 회전자 위치 간접 검출 방식)

  • 조현민;이광운;박정배;여형기;유지윤
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.31-36
    • /
    • 1999
  • In this paper, a novel indirect rotor position sensing method is proposed to improve the performance of sensorless drive of brushless DC motors. Fast mode change to the sensorless operation is difficult in the existing indirect rotor position sensing methods because precise rotor position can not be obtained when an excessive input is applied to the drive during synchronous operation mode. To cope with this problem, the relationship between terminal voltage and back-emf waveform is analyzed in this paper, also a novel indirect position sensing method which can detect a precise rotor position at low speed range is proposed. The effectiveness of the proposed method is verified through the experimental results.

  • PDF

New control strategy of propulsion system for the Transit Maglev System (자기부상열차용 추진제어장치의 새로운 제어기법)

  • 이은규;최재호
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.4
    • /
    • pp.267-275
    • /
    • 2002
  • The traction drive system for the urban transit maglev system is described in this paper. To control the magnitude and frequency of the output voltage of induction motor transiently, the vector control strategy is generally used. But in case of the traction drive system for the railway vehicle, it is difficult to use the vector control caused by the one-pulse mode in the high speed region. Therefore, this paper proposes the control strategy combined the vector control in the low speed region and the slip frequency control in the high speed region. And also, the overmodulation PWM method is discussed to make the change to the one-pulse mode softly. The performance of the proposed traction drive system is verified by the MATLAB simulation results.

A Hierarchical Model Predictive Voltage Control for NPC/H-Bridge Converters with a Reduced Computational Burden

  • Gong, Zheng;Dai, Peng;Wu, Xiaojie;Deng, Fujin;Liu, Dong;Chen, Zhe
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.136-148
    • /
    • 2017
  • In recent years, voltage source multilevel converters are very popular in medium/high-voltage industrial applications, among which the NPC/H-Bridge converter is a popular solution to the medium/high-voltage drive systems. The conventional finite control set model predictive control (FCS-MPC) strategy is not practical for multilevel converters due to their substantial calculation requirements, especially under high number of voltage levels. To solve this problem, a hierarchical model predictive voltage control (HMPVC) strategy with referring to the implementation of g-h coordinate space vector modulation (SVM) is proposed. By the hierarchical structure of different cost functions, load currents can be controlled well and common mode voltage can be maintained at low values. The proposed strategy could be easily expanded to the systems with high number of voltage levels while the amount of required calculation is significantly reduced and the advantages of the conventional FCS-MPC strategy are reserved. In addition, a HMPVC-based field oriented control scheme is applied to a drive system with the NPC/H-Bridge converter. Both steady-state and transient performances are evaluated by simulations and experiments with a down-scaled NPC/H-Bridge converter prototype under various conditions, which validate the proposed HMPVC strategy.

Analysis of Power Supply System for 8.5 MVA Magnetic Power Supply Using EI (EMTDC를 이용한 8.5 MVA급 Magnetic Power Supply의 전력공급 시스템 분석)

  • Jeong, Yong-Hoo;Nho, Eui-Cheol;Kim, In-Dong;Choi, Jung-Wan
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1114-1116
    • /
    • 2002
  • The characteristics of voltage drop and THD for parallel operating 11 PCRs (Phase Controlled Rectifiers) are analysed. The PCRs are used to drive high current (1.6 kA ${\sim}$ 3.7 kADC) electromagnetic coils for electromagnets. All the PCRs operate simultaneously in pulsed mode, and the pulse shot occurs every 150 seconds. During the pulse operation the PCR output current ramps up for 4 seconds, and then keeps flat top state for 2 seconds, and finally ramps down for 4 seconds. For the flat top mode a severe voltage drop and distortion appear in the power system because transformers for the PCRs are designed considering pulsed mode operation. It is expected that the analysis method can be applied to improve the system performance including power factor and design of high power pulsed mode operating power supply systems.

  • PDF

Model Following Sliding-Mode Control of a Six-Phase Induction Motor Drive

  • Abjadi, Navid R.;Markadeh, Gholamreza Arab;Soltan, Jafar
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.694-701
    • /
    • 2010
  • In this paper an effective direct torque control (DTC) and stator flux control is developed for a quasi six-phase induction motor (QIM) drive with sinusoidally distributed windings. Combining sliding-mode (SM) control and adaptive input-output feedback linearization, a nonlinear controller is designed in the stationary reference frame, which is capable of tracking control of the stator flux and torque independently. The motor controllers are designed in order to track a desired second order linear reference model in spite of motor resistances mismatching. The effectiveness and capability of the proposed method is shown by practical results obtained for a QIM supplied from a voltage source inverter (VSI).