• Title/Summary/Keyword: Voltage sag

Search Result 366, Processing Time 0.03 seconds

New Voltage Sag/Swell Compensator Using Direct Power Conversion Method (직접전력변환 방식을 이용한 새로운 전압 sag/swell 보상기)

  • Cha, Han-Ju;Lee, Dae-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.267-269
    • /
    • 2006
  • In this paper, a new single phase voltage sag/swell compensator using direct power conversion is introduced. A new compensator consists of input/output filter, series transformer and direct ac-ac converter, which is a single-phase back-to-back PWM converter without dc-link capacitors. Advantages of the proposed compensator include: simple power circuit by eliminating dc-link electrolytic capacitors and thereby, improved reliability and increased life time of the entire compensator; simple PWM strategy to compensate voltage sag/swell at the same time and reduced switching losses in the ac-ac converter. Further, the proposed scheme is able to adopt simple switch commutation method without requiring complex four-step commutation method commonly required in the direct power conversion. Simulation results are shown to demonstrate the advantages of the new compensator and PWM strategy.

  • PDF

Implementation of Voltage Sag/Swell Compensator using Direct Power Conversion (직접전력변환 방식을 이용한 전압 강하/상승 보상기의 구현)

  • Lee, Sang-Hoey;Cha, Han-Ju;Han, Byung-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.8
    • /
    • pp.1544-1550
    • /
    • 2009
  • In this paper, a new single phase voltage sag/swell compensator using direct power conversion is proposed. A new compensator consists of input/output filter, series transformer and direct ac-ac converter, which is a single-phase back-to-back PWM converter without dc-link capacitors. Advantages of the proposed compensator include: simple power circuit by eliminating dc link electrolytic capacitors and thereby, improved reliability and increased life time of the entire compensator; simple PWM strategy or compensating voltage sag/swell at the same time and reduced switching losses in the ac-ac converter. Further, the proposed scheme is able to adopt simple switch commutation method without requiring complex four-step commutation method that is commonly employed in the direct power conversion. Simulation and experimental results are shown to demonstrate the advantages of the new compensator and PWM strategy. A 220V, 3kVA single-phase compensator based on the digital signal processor controller is built and tested.

Operating Characteristics Analysis of PWM Boost AC-AC Converter for Compensation of Voltage Sag (전압 Sag 보상을 위한 PWM Boost AC-AC 컨버터의 동작 특성 해석)

  • 최남섭
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.315-319
    • /
    • 2003
  • This paper presents modeling and analysis of static and dynamic characteristics in PWM Boost AC-AC converter used for input voltage sag compensation of custom power. Especially, using circuit DQ transformation technique, an equivalent circuit in fundamental frequency domain is obtained which has all the system characteristics. Moreover, voltage gain and input power factor is analytically induced and linearized state equation at the specific operating point is given. Finally, simulation results show the validity of the proposed modelling and analyses.

  • PDF

Implementation of Voltage Sag/Swell Compensator Using Direct Power Conversion Method (직접전력변환 방식을 이용한 전압 sag/swell 보상기의 구현)

  • Cha, Han-Ju;Lee, Dae-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1014-1015
    • /
    • 2006
  • In this paper, a new single phase voltage sag/swell compensator using direct power conversion is introduced. A new compensator consists of input/output filter, series transformer and direct at-ac converter, which is a single-phase back-to-back PWM converter without dc-link capacitors. Advantages of the proposed compensator include: simple power circuit by eliminating dc-link electrolytic capacitors and thereby, improved reliability and increased life time of the entire compensator; simple PWM strategy to compensate voltage sag/swell at the same time and reduced switching losses in the ac-ac converter. Further, the proposed scheme is able to adopt simple switch commutation method without requiring complex four-step commutation method commonly required in the direct power conversion. Simulation results are shown to demonstrate the advantages of the new compensator and PWM strategy.

  • PDF

A method to determine the relative location of voltage sag (순간전압강하(Sag)의 상대적 위치 판별 방법)

  • Ahn, S.J.;Won, D.J.;Chung, I.Y.;Moon, S.I.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.157-159
    • /
    • 2003
  • To improve power quality, it is important to find the location of disturbance source. This paper presents a method to find the location of disturbance source that leads to voltage sag. The relative location of the source is defined and the method to determine the relative location of voltage sag is proposed. With this method, this paper shows that the location of disturbance source can be identified under distributed monitoring system.

  • PDF

Method to Estimate Expected Sag Frequency Considering the Operating Condition of Power System (전력계통 운전조건을 고려한 순간전압강하 추계 방법)

  • Son, Jeongdae;Lee, Kyebyung;Park, Chang-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.3
    • /
    • pp.382-387
    • /
    • 2016
  • This paper deals with the assessment of voltage sags regarding the variation of system operating conditions. In general, voltage sag assessment is performed by assuming the constant operating condition throughout the year. However, the assumption can lead to assessment errors in case of considerable changes of system operation condition. This paper presents a method to estimate ESF(expected sag frequency) considering the operating conditions according to the changes of power demand throughout the year.

Analysis on Current Limiting Characteristics of a Fault-lock Type SFCL Applied into a Simulated Power System (모의전력계통에 적용된 자속구속형 초전도 전류제한기의 전류제한 특성 분석)

  • Han, Tae-Hee;Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.2
    • /
    • pp.141-146
    • /
    • 2011
  • When the current of the superconducting element exceeds its critical current by the fault occurrence, the quench of the high-$T_C$ superconducting fault current limiter (HTSC) comprising the flux-lock type superconducting fault current limiter (SFCL) occurs. Simultaneously, the magnetic flux in the iron core induces the voltage in each coil, which contributes to limit the fault current. In this paper, the fault current limiting characteristics of the flux-lock type SFCL as well as the load voltage sag suppressing characteristics according to the flux-lock type SFCL's winding direction were investigated. To confirm the fault current limiting and the voltage sag suppressing characteristics of the this SFCL, the short-circuit tests for the simulated power system with the flux-lock type SFCL were carried out. The flux-lock type SFCL designed with the additive polarity winding was shown to perform more effective fault current limiting and load voltage sag suppressing operations through the fast quench occurrence right after the fault occurs and the fast recovery operation after the fault removes than the flux-lock type SFCL designed with the subtractive polarity winding.

Reliability Evaluation for Considering the Voltage Quality in Power Distribution Systems (전압품질을 고려한 배전계통의 신뢰도 평가)

  • Yun, Sang-Yun;Kim, Oun-Seok;Bae, Joo-Chun;Kim, Nark-Kyung;Park, Joong-Shin;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.525-527
    • /
    • 2000
  • This paper presents a reliability evaluation method for considering the voltage quality. The proposed evaluation methods are contained the sustained interruption, momentary interruption and voltage sag. For momentary interruption, evaluation indexes are divided the duration based index and the interruption cost index. For voltage sag, the final result of evaluation method represents the magnitude for customers' risk due to the voltage sag. The proposed method is tested using the RBTS model and a reliability data in KEPCO's system.

  • PDF

A Study of a Voltage Sag Compensation Scheme on Loads by Using Flywheel Energy Storage system (플라이휠을 이용한 부하에의 순시전압강하 보상 방안 연구)

  • Lee, Han-Sang;Jang, Gil-Soo;Han, Sang-Cheul;Sung, Tae-Hyun;Han, Young-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.321-322
    • /
    • 2006
  • Faults on power systems are inevitable phenomena. These faults can be classified by two categories, temporary and permanent faults. Without distinction of fault types, the faults would induce several changes on power system such as transmission line trip. Especially, the most common phenomena which loads experience by the power system fault is voltage sag. Voltage sags mean that the bus voltage maintains under 0.9 p.u. of rating for several cycles, and they give serious effects to operation of load devices. To ensure proper operation of the load, the flywheel systems, one of the energy storage system, are suggested in this paper. This paper demonstrates the efficiency of flywheel energy storage system against voltage sag by PSCAD/EMTDC simulation.

  • PDF

A Comparative Analysis of Voltage Sag Detecting Techniques for Dynamic Voltage Restorer (동적전압보상기(DVR)를 구성하기 위한 순시전압강하의 검출기법 비교)

  • Shon, Jin-Geun;Suk, Won-Yeob;Park, Jong-Chan;Na, Chae-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2004.07e
    • /
    • pp.10-13
    • /
    • 2004
  • The recent growth in the use of impactive and nonlinear loads, electronic devices sensitive to power quality has caused many power quality problems. Dynamic voltage restorers(DVR) are known as the best effective and economic means to compensate for power quality problems(especially, voltage sag and sewll). In this paper, we adresses the detecting algorithsms and implementation techniques of an voltage sag for operating DVR.

  • PDF