• Title/Summary/Keyword: Voltage drop

Search Result 745, Processing Time 0.029 seconds

A Study on control realization of FACTS equipment in Electric Railway Systems using EMTP MODELS (EMTP MODELS를 이용한 전기철도 FACTS 설비의 제어 구현 연구)

  • Oh, Min-Hyuk;Lee, Byung-Ha
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.329-330
    • /
    • 2006
  • The purpose of this paper is to compensate the voltage drop of the power system in the AC Electric Railway Systems. Reactive power compensation is often the most effective way to improve system voltage drop. The suitable modeling of the electric railway system should be applied to the EMTP. the dynamic characteristics of 3-Phase Induction Motor in Electric Railway Systems is considered for precise modeling. it is shown through EMTP simulation using EMTP MODELS that voltage drop can be compensated effectively by STATCOM.

  • PDF

Voltage Drop and Power Factor Compensation Relation of Induction Motor applied to Logistics System (물류 시스템 적용 유도전동기의 전압강하와 역률 보상 관계)

  • Kim, Jong-Gyeum
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.3
    • /
    • pp.155-159
    • /
    • 2018
  • Recently, the expansion or establishment of facilities for the logistics system is increasing. Conveyor facilities play a major role in sorting and transporting logistics. Induction motors are widely used for the operation of these conveyor systems. In the logistics system, a large number of induction motors are used. These motors have a considerable distance from the power source side and have a low power factor. The installation position for the power factor compensation of the induction motor is very important. Since the voltage drop depends on the length of the line, it is an important parameter in capacitor capacity determination for power factor compensation. The capacity of the capacitors installed to compensate the power factor of the inductive load should be designed to the extent that self-excitation does not occur. In this study, we analyze the method of compensating the proper power factor considering the voltage drop and the installation position of the induction motor in the logistics system.

Analysis for the Inrush Current and Voltage Drop of Induction Generator by the Reactor Tap Change (리액터 탭 설정값에 따른 유도발전기의 돌입전류와 전압강하 분석)

  • Kim, Jong-Gyeum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.8
    • /
    • pp.1202-1206
    • /
    • 2015
  • The induction generator has many advantages compared to the synchronous generator in terms of cost and maintenance. So squirrel cage induction generator has been recently supplied in small hydroelectric power station. Squirrel cage induction generator generates a high inrush current at the grid-connection. This high inrush current causes a voltage drop on the grid. In order to increase the supply of the induction generator, it is very important to find the method of reducing inrush current and voltage drop.

A Study on the Voltage Drop of Induction Generator along the Rotor Shape (회전자 형상에 따른 유도발전기 전압강하에 대한 연구)

  • Kim, Jong-Gyeum
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.2
    • /
    • pp.62-66
    • /
    • 2015
  • Induction generator is easy to durability and maintenance than the synchronous generator. So, recently Induction generator has been widely applied to small-scale hydroelectric power plant. When the rotor is operating faster than synchronous speed, induction machine can generate electric power. Induction generator has a large inrush currents, such as the starting current of the induction motor. Induction motor has been designed a variety of rotor shape in order to reduce starting current. Since the occurrence of high inrush current cause a voltage drop to the system, it will need to reduce possible. Because the starting current of the squirrel-cage induction motor varies in accordance with the rotor shape, it is necessary to analyze the magnitude of inrush current in order to apply to the generator. In this study, we analyzed the inrush current and the voltage drop caused in accordance with the rotor shape of 1500kw induction generator.

Improvement of Electrical Characteristics of Vertical NPT Trench Gate IGBT using Trench Emitter Electrode (트랜치 에미터 전극을 이용한 수직형 NPI 트랜치 게이트 IGBT의 전기적 특성 향상 연구)

  • Lee Jong-Seok;Kang Ey-Goo;Sung Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.10
    • /
    • pp.912-917
    • /
    • 2006
  • In this paper, Trench emitter electrode IGBT structure is proposed and studied numerically using the device simulator, MEDICI. The breakdown voltage, on-state voltage drop, latch up current density and turn-off time of the proposed structure are compared with those of the conventional trench gate IGBT(TIGBT) structures. Enhancement of the breakdown voltage by 19 % is obtained in the proposed structure due to dispersion of electric field at the edge of the bottom trench gate by trench emitter electrode. In addition, the on-state voltage drop and the latch up current density are improved by 25 %, 16 % respectively. However increase of turn-off time in proposed structures are negligible.

Study on Design of 60 V TDMOSFET for Protection Circuit Module (Protection Circuit Module에 최적화된 60 V급 TDMOSFET 최적화 설계에 관한 연구)

  • Lee, Hyun-Woong;Jung, Eun-Sik;Oh, Reum;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.5
    • /
    • pp.340-344
    • /
    • 2012
  • Protected Circuit Module protects battery from over-charge and over-discharge, also prevents accidental explosion. Therefore, power MOSFET is essential to operate as a switch within the module. To reduce power loss of MOSFET, the on state voltage drop should be lowered and the switching time should be shorted. However there is trade-off between the breakdown voltage and the on state voltage drop. The TDMOS can reduce the on state voltage drop. In this paper, effect of design parameter variation on electrical properties of TDMOS, were analyzed by computer simulation. According to the analyzed results, the optimization was performed to get 65% higher breakdown voltage and 17.4% on resistance enhancement.

A Study on the Instantaneous Voltage Drop Compensator through the Series Voltage Injection (직렬 전압주입에 의한 순간전압강하 보상기기에 관한 연구)

  • 전영환;김지원;전진홍
    • Journal of Energy Engineering
    • /
    • v.10 no.4
    • /
    • pp.310-317
    • /
    • 2001
  • The instantaneous voltage drop is occurred when the fault is happened on the nearby feeders. The instantaneous voltage drop is continued during relatively short period. But, the effect of it can be very severe to some sensitive devices. That is, it can be the reason of restart or malfunction of some devices. And these phenomenons can cause the enormous economical damage and shorten the lifetime of the devices. In this paper the device which can compensate the instantaneous voltage drop, is studied. The device injects the voltage to the power system through the series transformer. The validity of the proposed algorithm using peak detection method is verified through the computer simulation and experiments.

  • PDF

Analysis of Voltage Drop and Thermal Characteristics for Poor Connections at Electrical Connector of Circuit Breaker of Small Size Pulverizer below 5.5kW (5.5kW이하의 소형분쇄기 차단기 접속부의 접촉불량에 의한 전압강하 및 열적 특성 분석)

  • Kim, Sang Chul
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.26-31
    • /
    • 2015
  • This paper describes the characteristics of voltage drop and thermal for poor connection on electrical connector of circuit breaker in control box of small size pulverizer. In order monitor, we did the changes of RMS in voltage and temperature value with video and made normal state over $2.5N{\cdot}m$ and poor connections state below $0.2N{\cdot}m$ by screw gage. In case of voltage signal, the voltage drop was increased when the current was increased due to poor connections. In case of temperature signal, the temperature difference indicates ten times at 5A and fourteen times at 15A in the normal state. According to increase thermal energy, the insulation of electrical wiring and connector of circuit breaker can be carbonized. The results of this study will be useful to the development of preventive devices and system for electric fire by poor connection at small size pulverizer.

Analysis for Voltage Fluctuation and Power Flow at the Grid-Connected Time of Squirrel-Cage Induction Generator (농형 유도발전기의 계통 연계시 전압 변동 및 전력 흐름 분석)

  • Kim, Jong-Gyeum
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.6
    • /
    • pp.45-51
    • /
    • 2014
  • Synchronous generators and induction generators are mainly used in hydroelectric power generation. Synchronous generator is mainly applied to large hydroelectric plants but induction generator is applied to the small hydro power plants. Stability of induction generator is slightly less than the synchronous generator. However, induction generator has many advantages rather than a synchronous generator in terms of price and maintenance. So Induction generator is used primarily in small hydroelectric power station less than 1,000kW recently. Squirrel cage induction generator generates a high inrush current at the grid-connection. This high inrush current causes a voltage drop on the grid. In order to reduce the voltage drop and to analyze the power flow, the analysis for operating characteristics of the induction generator should be reviewed in advance. In this study, we analyzed the voltage drop and power flow analysis when a 1500kW induction generator is connected to the grid. The voltage drop is slightly higher than the acceptable range of distributed power supply voltage and the power flow of the generator is performed well.

A Study on the Low Power LDO Having the Characteristics of Superior IR Drop (우수한 IR Drop 특성을 갖는 저전력 LDO에 관한 연구)

  • Lee, Kook-Pyo;Pyo, Chang-Soo;Koh, Si-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.10
    • /
    • pp.1835-1839
    • /
    • 2008
  • Power management is a very important issue in portable electronic applications. Portable electronic devices require very efficient power management like LDO to increase the battery life. As the voltage variation of battery power is large in the application of cell phone, camera, laptop, automotive, industry application and so on, battery power is not directly used and LDO is used to supply the power of internal circuit. Besides, LDO can supply DC voltage that is lower than bauer voltage and constant DC voltage that is not related to largely fluctuated battery power. In the study, the power-save mode current and IR-drop characteristics are analyzed from a LDO with on-chip fabricated in 0.18-um CMOS technology.