• Title/Summary/Keyword: Voltage controller

Search Result 1,847, Processing Time 0.031 seconds

Transient State Improvement of Three-Phase ZSI with the Input Feedforward and Fuzzy PI Controller (입력 피드포워드와 퍼지 PI제어기를 갖는 3상 ZSI의 과도상태 개선)

  • WU, Yan-Jun;Jung, Young-Gook;Lim, Young-Cheol
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.359-360
    • /
    • 2012
  • This paper proposes a scheme of auto-tuning fuzzy PI controller and input voltage feed forward to control the output voltage of a three-phase Z-source inverter (ZSI). The proposed scheme adjusts the ts (Kp and Ki) in real time in order to find the most suitable Kp and Ki for PI controller and to simplify the controller design. The proposed scheme is verified the validity by experiment and co-simulation in PSIM and MATLAB/SIMULINK both load step change and input DC voltage variation in Z-source inverter, and has compared with the conventional PID control scheme. The experiment results involve of three-phase output voltage, Z-network capacitor voltage and dc-link peak voltage value. By those analysis and comparison, the availability of the proposed method in output voltage transient response quality improving has been verified. Compared with conventional PID method, the proposed method showed a more effective and robust control performance for coping with the severe disturbance conditions.

  • PDF

Development of a 4kW, High Efficiency, Series-Resonant DAB Converter (4kW급 고효율 직렬 공진형 DAB 컨버터 개발)

  • Sangmin, Lee;Gil-Dong, Kim;Seung-Hwan, Lee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.6
    • /
    • pp.498-506
    • /
    • 2022
  • This study proposes a design methodology for bidirectional, series-resonant, dual-active bridge (SRDAB) converters. The circuit parameters of the SRDAB converters are designed by considering the output power and efficiency of the converter. The proposed method can be used to design a high-power, high-efficiency SRDAB converter. A voltage controller is employed to manipulate the output voltage of the converter, and the controller gains are selected using the transfer function and frequency response of the controller. Simulation results show that the output power of the designed SRDAB converter is 2 kW per converter module as designed. In addition, the performance of the voltage controller is evaluated using the simulation and experimental results. The output voltage follows the reference voltage within 10 ms under the step change of the reference command. The output voltage also follows the reference voltage under the step load change. The efficiency of the designed SRDAB converter is 95.6%.

An Efficient Control Strategy Based Multi Converter UPQC using with Fuzzy Logic Controller for Power Quality Problems

  • Paduchuri, Chandra Babu;Dash, Subhransu Sekhar;Subramani, C.;Kiran, S. Harish
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.379-387
    • /
    • 2015
  • A custom power device provides an integrated solution to the present problems that are faced by the utilities and power distribution. In this paper, a new controller is designed which is connected to a multiconverter unified power quality conditioner (MC-UPQC) for improving the power quality issues adopted modified synchronous reference frame (MSRF) theory with Fuzzy logic control (FLC) technique. This newly designed controller is connected to a source in order to compensate voltage and current in two feeders. The expanded concept of UPQC is multi converter-UPQC; this system has a two-series voltage source inverter and one shunt voltage source inverter connected back to back. This configuration will helps mitigate any type of voltage / current fluctuations and power factor correction in power distribution network to improve power quality issues. In the proposed system the power can be conveyed from one feeder to another in order to mitigate the voltage sag, swell, interruption and transient response of the system. The control strategies of multi converter- UPQC are designed based on the modified synchronous reference frame theory with fuzzy logic controller. The fast dynamics response of dc link capacitor is achieved with the help of Fuzzy logic controller. Different types of fault conditions are taken and simulated for the analysis and the results are compared with the conventional method. The relevant simulation and compensation performance analysis of the proposed multi converter-UPQC with fuzzy logic controller is performed.

Anti-Windup Scheme to Control DC Voltage of Three-Phase Four-Wire Active Power Filter (누적방지 기법을 적용한 3상 4선식 능동전력필터 시스템의 직류전압 제어)

  • 정교범
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.128-136
    • /
    • 2003
  • This paper investigates the application of the anti-windup scheme to control U voltage of the three-phase four-wire active power filter, installed in a three-phase four-wire power system. In order to reduce efficiently the harmonic currents caused by the switching loads and to improve the whole performance of the flower system, the DC voltage of the three-phase four-wire active power filter should be properly controlled. PI controller can be applied to the U voltage controller of the three-phase four-wire active power filter. However, a large error input to PI controller leads to a windup phenomenon which deteriorate the dynamic characteristics of the U voltage controller Therefore, the application of the anti-windup scheme for the DC voltage controller is proposed and the improved performances of the anti-windup U voltage controller are proved through the computer simulation study.

Harmonic Suppression of the Input Current in Microwave Oven Using LLC Resonant Inverter (전자레인지용 LLC 공진형 인버터의 입력전류 고조파 억제)

  • Kang, Kyelyong;Kim, Heung-Geun;Cha, Honnyong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.3
    • /
    • pp.225-230
    • /
    • 2018
  • This paper proposes a parametric design of an LLC resonant inverter used for a microwave oven. To improve the harmonic performance of the microwave oven, a current controller with a variable PI gain is proposed. Due to the recent strengthening of harmonics regulations, inverter control technology for microwave ovens is now required to satisfy harmonic performance. In an LLC resonant inverter, the voltage gain varies remarkably depending on the magnetron voltage, output power, and input voltage. To satisfy harmonic performance, a controller that can maintain operation in the zero-voltage switching (ZVS) region and control changes in voltage gain is required. The modified design of the LLC resonant inverter ensures ZVS operation even when the magnetron is heated. Application of the variable current controller improves harmonic control according to the instantaneous gain curve change. The validity of the proposed power control with a variable current controller is verified by experiments with a 1200 W microwave oven.

Non-Linear Model of Voltage Source Power Converter and Tuning Current controller (전압형 전력 변환기 비선형 모델 및 전류제어기 조정)

  • Park, Sang-Young
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.144-146
    • /
    • 1998
  • In this study Dead time equivalent resistance of Voltage source power converter is very important in current controller design. And Non-linear Modeling method can be applied in Power converter analysis. Using Describing Function method and Non-linear Resistance Modeling. Voltage Source Power Converter Bode diagram and Current controller analysis method are more reality.

  • PDF

Design of Triple Loop Current Control for Auxiliary Power Unit of Fuel Cell Train having Grid Connected Inverter Function (계통 연계 기능을 갖는 연료전지 철도차량 보조전원장치의 삼중 루프 전류 제어기 설계)

  • Kwon, Il-Seob;Baek, Seung-Woo;Kim, Hag-Wone;Cho, Kwan-Yual
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.4
    • /
    • pp.293-302
    • /
    • 2020
  • This study proposes a triple-loop current control method for the auxiliary power unit of fuel cell trains. The auxiliary power unit of fuel cell trains has a grid-connected function when power is supplied to the utility grid. Moreover, the auxiliary power unit of trains has a 1500 V DC link voltage; thus, PWM frequency cannot be increased to a high frequency. Owing to this low PWM frequency condition, creating a triple-loop design is difficult. In this study, a triple-loop controller is developed for a capacitor voltage controller in standalone mode that operates as an auxiliary power supply for trains and for a grid current controller in grid control mode with an inner capacitor voltage controller. The voltage controller employs an inductor current controller inner loop. To overcome low PWM frequency, a design method for the bandwidth of the capacitor voltage controller considering the bandwidth of the inner inductor current controller is described. The effectiveness of the proposed method is proven using PSIM simulation.

The Digital Control of AC Voltage Controller for Efficiency Improvement of Induction Motor (유도전동기 효율개선을 위한 교류전압제어기의 디지탈제어)

  • Kwon, Dong-Bin;Lee, Seung-Chul;Jeong, Seung-Gi
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.392-396
    • /
    • 1994
  • A method which improves the efficiency of induction motor by controlling the input voltage by the three phase AC voltage controller is studied at the sides of theory and practice. At first, the principle of decreasing the input power and improving the efficiency by adjusting the amplitude of the input voltage according to the load rate is shown. Secondarily, the mathematical model of the three phase AC voltage controller-induction motor system is drived to translate the dynamic characteristics. The validity of the dynamic model is verified by simulation. The new driving method is also proposed, which regulates the rated speed's driving by the speed estimation from the firing angle and the magnitude reverse induced-voltage information. As a result, the digital control system is constructed. Expermintal results show desirable characteristics of proposed system.

  • PDF

Isolated Feedback of Inverter DC-Link Voltage Using Flyback Converters (플라이백 컨버터를 이용한 인버터 직류링크 전압의 절연 궤환)

  • Kim, Kyung-Seo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.4
    • /
    • pp.281-285
    • /
    • 2018
  • An isolated feedback method for measuring the inverter DC-link voltage is proposed. This method provides a simple and economical solution to inverter control systems that use a flyback converter as a controller power supply. In the proposed method, data on the DC-link voltage are acquired when the primary side voltage appears on the secondary side of the flyback transformer, thereby eliminating the need to adopt an extra signal isolation method. To solve the non-synchronization problem between the flyback converter switching and main controller sampling, the external interrupt function of the micro-controller is used as a trigger signal for the A/D conversion.

Design and Analysis of PI-IP Hybrid Controller of Interlinking Converter for DC Bus Voltage control in DC Microgrid (DC 마이크로그리드의 DC 버스 전압제어를 위한 Interlinking 컨버터의 PI-IP 혼합제어기 설계 및 분석)

  • Kim, Tae-Gyu;Lee, Hoon;Choi, Bong-Yeong;Kang, Kyung-Min;Kim, Mina;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.144-145
    • /
    • 2019
  • This paper proposes a design and analysis for a PI-IP hybrid voltage controller with a combination of PI and IP voltage controller for stable voltage control of DC bus voltage, Transient characteristic of DC bus voltage is improved by designed setting variable value and control method in the variable load and power generation conditions.

  • PDF