• Title/Summary/Keyword: Voltage component

Search Result 805, Processing Time 0.022 seconds

Controlling Zero Sequence Component in DVR for Compensating Unbalanced Voltage Dip of a DFIG

  • Ko, JiHan;Thinh, Quach Ngoc;Kim, SeongHuyn;Kim, Eel-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.154-155
    • /
    • 2012
  • The dynamic voltage restorer (DVR) is an effective protection device for wind turbine generator based on doubly-fed induction generator (DFIG) operated under the unbalanced voltage dip conditions. The compensating voltages of DVR depend on the voltage dips and on the influence of the zero sequence components. If the $Y_0/{\Delta}$ step-up transformers are used, there are no zero sequence components on the DFIG side. However, if the $Y_0/Y_0$ step-up transformers are used, the zero sequence components will appear during faults. The zero sequence components result in the high insulation costs and the asymmetric of the terminal voltages. This paper proposes a method for controlling zero sequence components in DVR to protect DFIG under unbalanced voltage dips. Simulation results are presented to verify the effectiveness of the proposed control method.

  • PDF

Performance Improvement of DC-link Control for a Dynamic Voltage Restorer with Power Feedforward Compensation (전력 전향보상을 통한 동적전압보상기 직류단 전압 제어의 성능 향상)

  • Ji, Kyun Seon;Jou, Sung Tak;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.9
    • /
    • pp.1297-1305
    • /
    • 2015
  • This paper proposes a power feedforward technique for the performance improvement of DC-link voltage control in the dynamic voltage restorer (DVR). The DC-link Voltage is able to be unstable for an instant owing to any change in the load and voltage sag. The distortion of the DC-link voltage leads to the negative influence on the performance of DVR. To mitigate the distortion of the DC-link voltage, the power feedforward component is calculated by the load power and the grid voltage, and then it is added to the reference current of the conventional DC-link voltage controller. By including output power feedforward component on the DC-link controller, the DC-link voltage can settle down more quickly than when the conventional DC-link voltage controller applied. The proposed technique was validated through the simulation and experimental results.

Design and Control Method for Sub-module DC Voltage Ripple of HVDC-MMC

  • Gwon, Jin-Su;Park, Jung-Woo;Kang, Dea-Wook;Kim, Sungshin
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.921-930
    • /
    • 2016
  • This paper proposes a design and control method for a high-voltage direction current modular multilevel converter (HVDC-MMC) considering the capacitor voltage ripple of the submodule (SM). The capacitor voltage ripple consists of the line frequency and double-line-frequency components. The double line- frequency component does not fluctuate according to the active power, whereas the line-frequency component is highly influenced by the grid-side voltage and current. If the grid voltage drops, a conventional converter increases the current to maintain the active power. A grid voltage drops, current increment, or both occur with a capacitor voltage ripple higher than the limit value. In order to reliably control an MMC within a limit value, the SM capacitor should be designed on the basis of the capacitor voltage ripple. In this paper, the capacitor voltage ripple according to the grid voltage and current are analyzed, and the proposed control method includes a current limitation method considering the capacitor voltage ripple. The proposed design and control method are verified through simulation using PSCAD/EMTDC.

Study on the OCR Setting Using the Voltage Component Considering Application of the SFCL in a Power Distribution System (배전계통에 초전도한류기 적용시 전압요소를 이용한 과전류계전기 정정 연구)

  • Lim, Seung-Taek;Lim, Sung-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1587-1594
    • /
    • 2018
  • In south korea, the government make a plan to generate the 20% of the total electrical power as renewable source like wind generation and solar generation. This plan will accelerate the increase of fault current with power industry's growth. As the increase of fault current, the superconducting fault current limiter (SFCL) has been studied. In case that the SFCL is applied in power system, it can cause the overcurrent relay (OCR)'s trip delay because of the reduced fault current. In this paper, the overcurrent relay with voltage component was suggested to improve the OCR's trip delay caused by the SFCL and compensational constant was introduced to have the trip time similar to the trip time of case without the SFCL. For conforming the effect of the suggested OCR with voltage component, the PSCAD/EMTDC simulation modeling and analysis were conducted. Through the simulation, it was conformed that the trip delay could be improved by using the suggested OCR and compensational constant.

Design of DC Battery Size & Controller for Household Single-Phase ESS-PCS Considering Voltage Drop and DC Link Voltage Ripple (주택용 단상 ESS-PCS의 전압손실과 직류링크 맥동을 고려한 직류측 배터리 사이즈 및 제어기 설계)

  • Kim, Yong-Jung;Lee, Jinsung;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.2
    • /
    • pp.94-100
    • /
    • 2018
  • Generally, in a single-phase energy storage system (ESS) for households, AC ripple component with twice the fundamental frequency exists inevitably in the DC link voltage of single-phase PCS. In the grid-connected mode of a single-phase inverter, the AC ripple component in the DC link voltage causes low-order harmonics on grid-side current that deteriorates power quality on an AC grid. In this work, a control system adopting a feedforward controller is established to eliminate the AC ripple interference on the DC link side. Optimal battery nominal voltage design method is also proposed by considering the voltage loss and AC ripple voltage on DC link side in a single-phase ESS. Finally, the control system and battery nominal voltage design method are verified through simulations and experiments.

Two Modified Z-Source Inverter Topologies - Solutions to Start-Up Dc-Link Voltage Overshoot and Source Current Ripple

  • Bharatkumar, Dave Heema;Singh, Dheerendra;Bansal, Hari Om
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1351-1365
    • /
    • 2019
  • This paper proposes two modified Z-source inverter topologies, namely an embedded L-Z-source inverter (EL-ZSI) and a coupled inductor L-Z source inverter (CL-ZSI). The proposed topologies offer a high voltage gain with a reduced passive component count and reduction in source current ripple when compared to conventional ZSI topologies. Additionally, they prevent overshoot in the dc-link voltage by suppressing heavy inrush currents. This feature reduces the transition time to reach the peak value of the dc-link voltage, and reduces the risk of component failure and overrating due to the inrush current. EL-ZSI and CL-ZSI possess all of the inherent advantages of the conventional L-ZSI topology while eliminating its drawbacks. To verify the effectiveness of the proposed topologies, MATLAB/Simulink models and scaled down laboratory prototypes were constructed. Experiments were performed at a low shoot through duty ratio of 0.1 and a modulation index as high as 0.9 to obtain a peak dc-link voltage of 53 V. This paper demonstrates the superiority of the proposed topologies over conventional ZSI topologies through a detailed comparative analysis. Moreover, experimental results verify that the proposed topologies would be advantageous for renewable energy source applications since they provide voltage gain enhancement, inrush current, dc-link voltage overshoot suppression and a reduction of the peak to peak source current ripple.

Vector Control System of Induction Motor Using the Third Harmonic Component of the Stator Voltage (고정자 전압의 제3고조파 성분을 이용한 유도전동기의 벡터제어 시스템)

  • Ro, Ea-Sug;Jung, Jong-Jin;Kim, Heung-Geun
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.479-481
    • /
    • 1994
  • A direct vector control system of induction machine based determination of the spatial position of the airgap flux from the third harmonic component of the stator voltage is presented in this paper. The Rotor flux, necessary in direct vector control system, is estimated with the stator current and the airgap flux acquired from the third harmonic component of the stator voltage. And it will be used as an important information to implement the vector control system of the induction motor drive.

  • PDF

Application of ANN to Load Modeling in Power System Analysis

  • Jaeyoon Lim;Lee, Jongpil;Pyeongshik Ji;A. Ozdemir;C. Singh
    • KIEE International Transactions on Power Engineering
    • /
    • v.2A no.4
    • /
    • pp.136-144
    • /
    • 2002
  • Load models are very important for improving the accuracy of stability analysis and load flow studies. Various loads are connected to a power bus and their characteristics of power consumption change with voltage and frequency. Thus, the effect of voltage/frequency changes must be considered in load modeling. In this work, artificial neural networks-ANNs- were used to construct the component load models for more accurate modeling. A typical residential load was selected and subjected to a test under variable voltage/frequency conditions. Acquired data were used to construct component models by ANNs. The aggregation process of separately determined load models is also presented in the paper. Furthermore, this paper proposes a method to transform a single load model constructed by the aggregation method into a mathematical load model that can be used in traditional power system analysis software.

A Load Modeling to Utilize Power System Analysis Software (전력계통해석용 프로그램에 적용하기 위한 부하모델링)

  • 지평식
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.4
    • /
    • pp.96-101
    • /
    • 1999
  • Load model is very important to improve accuracy of stability analysis and load flow study in power systems. A power system bus is composed by various loads, and loads have different power consumption due to voltage/frequency changing. Thus the effect of voltage/frequency changing must he considered to load mxleling. In this research, ANN was used to construct component load moddel for more accurate load mxleling. Typical residential load was selected, and characteristics exrerimented on voltage/frequency changing. Acquired data used to construct the component ANN model, and aggregation method of component load model was presented based on component load model and composition rate. Furthennore, it's transfomlation method to the mathematical load model to he used at the traditional power system analysis soft wares was also presented.sented.

  • PDF

Compensation of Unbalanced PCC Voltage in an Off-shore Wind Farm of PMSG Type Turbines (해상풍력단지에서의 PMSG 풍력발전기를 활용한 계통연계점 불평형 전원 보상)

  • Kang, Ja-Yoon;Han, Dae-Su;Suh, Yong-Sug;Jung, Byoung-Chang;Kim, Jeong-Joong;Park, Jong-Hyung;Choi, Young-Joon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • This paper proposes a control algorithm for permanent magnet synchronous generators with a back-to-back three-level neutral-point clamped voltage source converter in a medium-voltage off-shore wind power system under unbalanced grid conditions. Specifically, the proposed control algorithm compensates for unbalanced grid voltage at the PCC (Point of Common Coupling) in a collector bus of an off-shore wind power system. This control algorithm has been formulated based on symmetrical components in positive and negative synchronous rotating reference frames under generalized unbalanced operating conditions. Instantaneous active and reactive power is described in terms of symmetrical components of measured grid input voltages and currents. Negative sequential component of AC input current is injected into the PCC in the proposed control strategy. The amplitude of negative sequential component is calculated to minimize the negative sequential component of grid voltage under the limitation of current capability in a voltage source converter. The proposed control algorithm enables the provision of balanced voltage at the PCC resulting in the high quality generated power from off-shore wind power systems under unbalanced network conditions.