• Title/Summary/Keyword: Voltage collapse

Search Result 98, Processing Time 0.033 seconds

A Study on the Analysis of Voltage Stability on Contingency with EMTP (EMTP를 이용한 상정사고시의 전압안정도에 관한 연구)

  • Song, Young-Joo;Shim, Keon-Bo;Kim, Jung-Hoon;Lee, Bong-Yong
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.620-622
    • /
    • 1995
  • This paper presents an analysis of the voltage stability when the contingency is occured in the power system. The evaluation of voltage stability is examined by the system identification based on T/L losses and percent indicator which represents how relatively far-off from the voltage collapse. When contingency happens, the bus voltages can be calculated using the EMTP and then, the time-interval in contingency is linearized between the known operating points in nose curves. For the sample study, the 5-bus and 7-bus systems are selected and, countermeasures for the contingency are established in view of the voltage stability.

  • PDF

Short-term Reactive Power Reserve Optimization Based on Trajectory Sensitivity

  • Sun, Quancai;Cheng, Haozhong;Zhang, Jian;Li, Baiqing;Song, Yue
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.541-548
    • /
    • 2017
  • An increasing concern is paid to short-term voltage stability with the growth of penetration of induction motor loads. Reactive power reserve(RPR) of power system is critical to improve voltage stability. A definition of short-term voltage stability-related RPR(SVRPR) is proposed. Generators vary their contributions to voltage stability with their location and system condition, etc. Voltage support coefficient based on the second-order trace sensitivity method is proposed to evaluate SVRPR's contribution to short-term voltage stability. The evaluation method can account for the generator's reactive support in transient process and the contingency severity. Then an optimization model to improve short-term voltage stability is built. To deal with multiple contingencies, contingency weight taking into account both its probability and severity is proposed. The optimization problem is solved by primal dual interior point method. Testing on IEEE_39 bus system, it is indicated that the method proposed is effective. Short-term voltage stability is improved significantly by the way of SVRPR optimization. Hence, the approach can be used to prevent the happening of voltage collapse during system's contingency.

Hybrid Control System for Managing Voltage and Reactive Power in the JEJU Power System

  • Seo, Sang-Soo;Choi, Yun-Hyuk;Kang, Sang-Gyun;Lee, Byong-Jun;Shin, Jeong-Hoon;Kim, Tae-Kyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.429-437
    • /
    • 2009
  • This paper proposes a hybrid voltage controller based on a hierarchical control structure for implementation in the Jeju power system. The hybrid voltage controller utilizes the coordination of various reactive power devices such as generators, switched shunt devices and LTC to regulate the pilot voltage of an area or zone. The reactive power source can be classified into two groups based on action characteristics, namely continuous and discrete. The controller, which regulates the pilot bus voltage, reflects these characteristics in the coordination of the two types of reactive power source. However, the continuous type source like generators is a more important source than the discrete type for an emergency state such as a voltage collapse, thereby requiring a more reactive power reserve of the continuous type to be utilized in the coordination in order to regulate the pilot bus voltage. Results show that the hybrid controller, when compared to conventional methods, has a considerable improvement in performance when adopted to control the pilot bus voltage of the Jeju island system.

A Study on the Dynamic Voltage Stability Considering the Power System Security Control (계통(系統)의 안전성(安全性) 제어(制御)를 고려(考慮)한 동적(動的) 전압안정도(電壓安定度)에 관(關)한 연구(硏究))

  • Lee, Geun-Joon;Hwang, Jong-Young;Lee, Gil-Soon;Jeong, Tay-Ho;Kim, Keon-Jung;Kim, Yong-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.54-60
    • /
    • 1994
  • The cause of black out of Tokyo Power in 1987 has been identified as the voltage stability problem. After this event many researchers has been interested in voltage stability or voltage collapse phenomena. The voltage instability is different Com the transient stability in the sense of reactive power mismatch and the long duration time. In this study, we developed efficient tool for analyze and control the dynamic voltage instability. To analize specific condition of dynamic voltage stability, quasi-dynamic simulation method is developed. To provide proper mathmatical model for dynamic voltage stability, generator, SVC, OLTC, induction motor models are introducted. To provide specified dynamic voltage stability, the authors considered to use reactive loss function(${\partial}Q/{\partial}p_L$) as reactive power facility control index. This program was tested and identified its usefulness in real KEPCO system.

  • PDF

Controller of the Capacitor Commutated Converter for Hvdc

  • Tsubota, Shinji;Funaki, Tsuyoshi;Matsuura, Kenji
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.914-919
    • /
    • 1998
  • A Capacitor Commutated Converter (CCC) has less difficulty of commutation failure in comparison to the conventional line commutated converter. This paper proposes the Ar1R control of the CCC in the inverter operation, which deserves as the Ar1R of the conventional converter. The CCC can be operated in high power factor area by using the proposing Ar1R control. The voltage stability at an AC bus connected the CCC inverter is investigated and estimated its ability of preventing the AC voltage collapse. To estimate the voltage stability, this paper developed the simplified converter mathematical model and led the VSF index. The results shows that the AC voltage stability is guaranteed and enables the interconnection to an weak AC system, when compensation factor of the compensation capacitor is higher than 200%.

  • PDF

Optimal Placement for FACTS to Improve Static Voltage Stability

  • Gu, Min-Yan;Baek, Young-Sik
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.3
    • /
    • pp.141-145
    • /
    • 2004
  • FACTS devices, such as the Thyristor Controlled Series Compensator (TCSC) and Static Var Compensators (SVC), can help increase system load margin to improve static voltage stability. In power systems, because of the high cost and the effect value, the optimal placement for FACTS devices must be determined. This paper investigates the use of the series device (SVC) and the parallel device (TCSC) from the point of load margin to increase voltage stability. It considers the sensitivity of load margin to the line reactance and eigenvector of the collapse. The study has been carried out on the IEEE 14 Bus Test System to verify the validity and efficiency of the method. It reveals that incorporation of FACTS devices significantly enhance load margin as well as system stability.

A Study on Voltage Stability Enhancement of Power System using the STATCOM (STATCOM을 이용한 전력계통의 전압안정도 향상방안에 관한 연구)

  • Gim, Jea-Hyeon;Kim, Yang-Il;Ki, Kyung-Hyun;Jeung, Sung-Won
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.255-258
    • /
    • 2003
  • In this paper there are different methods used to study the voltage stability, such as the P-V curve method. Jacobian method and the voltage collapse proximity indicator(L-index) method. The P-V curve method is to check operating margin from the maximum operating point. The Jacobian method is to check the eigenvalue or the minimum singular value of the load flow Jacobian matrix. If the power system is unstable, one of the eigenvalues, at least, has crossed the imaginary axis. The L-index method is to quantify how to close a particular operating point. This paper describes these methods to select the best location of FACTS and demonstrate the effectiveness of STATCOM of voltage stability on the IEEE 9-bus system.

  • PDF

DYNAMIC VOLTAGE COLLAPSE ANALYZED BY INDUCTION MOTOR MODEL II (유도기모델을 사용한 동적 전압 안정도 해석II)

  • Kim, Y.B.;Kim, Geon-Jung;Kim, Won-Gyeom;Jeong, Tae-Ho;Chu, Jin-Bu;Lee, Sang-Jung
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.171-173
    • /
    • 1993
  • This paper deals with a methodology of the dynamic voltage stability analysis. The several physical power system constraints e.q upper and lower lomit of SVC and OLTC are considered. The proposed equivalent load model is the combination induction motor and impedance load. The variation of System voltages and equivalent induction motor slips for actual power systems are simulated and plotted in this paper.

  • PDF

Analysis of Voltage Stability Using the Multiple Load Row Calculation Method with Loss Redistribution Algorithm (손실재분배 알고리즘을 이용한 조류다근계산법에 의한 전압 안정도 해석)

  • Ro, Min-Ho;Kim, Keun-Seong;Park, Sun-Jae;Chae, Myoung-Seck;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.743-745
    • /
    • 1996
  • This paper presents an approach for the analysis of static voltage stability in power system. The proposed approach is based on multiple load flow calculation method using the redistribution algorithm of transmission loss, with which more realistic load flow solution can be obtained in the near of voltage collapse point. Some simulation results of the proposed approach show that the accuracy of static voltage stability analysis can be increased.

  • PDF

A Study on the Determination of Voltage Limits for Korean Power System Reliability (국내 전력계통 신뢰도 기준을 위한 전압 제한범위 결정에 관한 연구)

  • Flores, BenJeMar-Hope F.;Aryani, Dwi Riana;Kim, Seungjin;Song, Hwachang
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.335-336
    • /
    • 2015
  • Voltage collapse is one of the main threats in power system operation and it is a result of a very low voltage profile in one or multiple areas in the power system network. Hence, the need for proper coordination among transmission and generator operators to maintain voltage stability if of paramount importance. In this paper, the different voltage and reactive power operating guidelines and criteria of various electric reliability councils, coordinating councils, transmission system operators and other electric utilities are discussed. Among these are NERC, ENTSO-E, WECC, PJM and ERCOT. A comprehensive comparison is also made to the existing Korean power system voltage reliability guidelines. Furthermore, this paper presents a set of voltage and reactive power guidelines that can help in determining voltage limits that can improve the reliability of the Korean power system operation.

  • PDF