• Title/Summary/Keyword: Voltage collapse

Search Result 98, Processing Time 0.026 seconds

On-Line Calculation of the Critical Point of Voltage Collapse Based on Multiple Load Flow Solutions (다중조류계산을 이용한 전압붕괴 임계점의 On-Line 계산)

  • Nam, Hae-Kon;Kim, Dong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.134-136
    • /
    • 1993
  • This paper presents a novel and efficient method to calculate the critical point of voltage collapse. Conjugate gradient and modified Newton-Raphson methods are employed to calculate two pairs of multiple load flow solutions for two operating conditions, i.e., both +mode and -mode voltages for two loading conditions respectively. Then these four voltage magnitude-load data sets of the bus which is most susceptible to voltage collapse, are fitted to third order polynomial using Lagrangian interpolation in order to represent approximate nose curve (P-V curve). This nose curve locates first estimate of the critical point of voltage collapse. The procedure described above is repeated near the critical point and the new estimate will be very close to the critical point. The proposed method is tested for the eleven bus Klos-Kerner system, with good accuracy and fast computation time.

  • PDF

Stability Index Based Voltage Collapse Prediction and Contingency Analysis

  • Subramani, C.;Dash, Subhransu Sekhar;Jagdeeshkumar, M.;Bhaskar, M. Arun
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.438-442
    • /
    • 2009
  • Voltage instability is a phenomenon that could occur in power systems due to stressed conditions. The result would be an occurrence of voltage collapse leading to total blackout of the system. Therefore, voltage collapse prediction is an important part of power system planning and operation, and can help ensure that voltage collapse due to voltage instability is avoided. Line outages in power systems may also cause voltage collapse, thereby implying the contingency in the system. Contingency problems caused by line outages have been identified as one of the main causes of voltage instability in power systems. This paper presents a new technique for contingency ranking based on voltage stability conditions in power systems. A new line stability index was formulated and used to identify the critical line outages and sensitive lines in the system. Line outage contingency ranking was performed on several loading conditions in order to identify the effect of an increase in loading to critical line outages. Correlation studies on the results obtained from contingency ranking and voltage stability analysis were also conducted, and it was found that line outages in weak lines would cause voltage instability conditions in a system. Subsequently, using the results from the contingency ranking, weak areas in the system can be identified. The proposed contingency ranking technique was tested on the IEEE reliability test system.

A Study on the Quantatitive Evaluation of Voltage Stability Improvement Effect By the T/L-Loss System Identification Method (송전손실 상태식별법을 이용한 전압안정성 개선효과의 정량적 평가에 관한 연구)

  • Choi, Jong-Key;Lee, Bong-Yong;Kim, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.45-47
    • /
    • 1994
  • The simulation of reactive power compensation in 5-bus and 25-bus system was conducted using transmission-line loss system identification method. Sensitivities of maximum load-power with respect to reactive power compensation was identified by the simulation. With sufficient reactive power compensation at the first voltage-collapsing load-bus, the first voltage collapse could be prevented until the next voltage-collapsing load-bus lost its voltage stability. And the total compensated reactive power at the first voltage-collapsing bus means reactive power margin of voltage collapse or distance to voltage collapse. This quantity can be useful for determining the size of compensating devices or the site to compensate.

  • PDF

Derivation of an Energy Function Based on Vector Product and Application to the Power System with Transfer Conductances and Capacitors (벡터 곱에 근거한 에너지함수 유도와 선로 컨덕턴스 및 커패시터를 포함한 전력시스템에의 적용 연구)

  • Moon Young-Hyun;Oh Yong-Taek;Lee Byung Ha
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.6
    • /
    • pp.274-283
    • /
    • 2005
  • This paper presents a new method to derive energy function based on vector product. Using this method, an energy function to consider transfer conductances and capacitors is derived. Then we recommend a voltage collapse criteria to predict the voltage collapse in power systems by using the energy margin derived by the proposed energy function. This energy function is applied to a 2-bus power system reflecting transfer conductances and capacitors. We show that the energy function derived based on vector product can be applied in order to analyze power system stability and the energy margin can be utilized as a criterion of voltage collapse by simulation for the 2-bus system.

A Study on the Analysis and Control of Voltage Stability (전압안정성 분석 및 제어에 관한 연구)

  • 장수형;김규호;유석구
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.6
    • /
    • pp.869-876
    • /
    • 1994
  • This paper presents an efficient method to calculate voltage collapse point and to avoid voltage instability. To evaluate voltage stability in power systems, it is necessary to get critical loading points. For this purpose, this paper uses linear programming to calculate efficiently voltage collapse point. Also, if index value becomes larger than given threshold value, voltage stability is improved by compensation of reactive power at selected bus. This algorithm is verified by simulation on the IEEE 14-bus sample system.

  • PDF

Properties of Multiple Load Flow Solutions and Prevention of Voltage Collapse in System with Induction Motor Load (전압다적해의 특성 및 유도전동기부하를 갖는 계통에 있어서의 전압안정)

  • Park, Jong-Keun
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.1
    • /
    • pp.19-28
    • /
    • 1985
  • As is well known, the power equations of the N-node system have 2N-1 voltage solutions at most. The vlotage solutions are characterized by the introduction of the mode concept in this paper. There are two mode voltages at one node. One is defined as the (+) mode voltage and the other is defined as the (-) mode one. In this paper, we show that the (-) mode voltage responds to the increase of the power condenser almost adversly to the response of the (+) one. We study how to prevent the voltage collapse in the system with the induction motor load. The critical values of the gain and the time constant in case of the continuous power condenser control, and of the unit power condenser and the closing time delay in case of the discontinuous control for the prevention of the voltage collapse, are calculated. The effect of the composition ratio of the impedance load to the induction moter load on the above critical values are also investigated.

  • PDF

Voltage Collapse Protection Considering Dynamics of Load (부하의 동특성을 고려한 TCSC에 의한 전압 붕괴의 예방)

  • Cho, J.H.;Son, K.M.;Lee, S.H.;Park, J.K.;Lee, B.H.
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.110-112
    • /
    • 1995
  • Now days, voltage stability is well recognized as an important problem. It is well known that voltage stability is influenced by the characteristics of load. Up to present, voltage stability researches were done by the static load modeling, but it is needed that the precise analysis by the view point of dynamic load modeling. In this paper, with induction motor as dynamic load, I show the voltage collapse mechanism followed by load increase. Then I propose the protective method of voltage collapse by using TCSC.

  • PDF

An Intelligent System to Prevent Voltage Collapse for A Power system (전력계통의 전압 붕괴 방지를 위한 인텔리젼트 시스템)

  • Kim, Jae-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.10
    • /
    • pp.472-479
    • /
    • 2001
  • In order to prevent voltage collapse. this paper introduces the idea of the intelligent system and operating polices for a power system, then presents the results of voltage stability studies for that power system. The intelligent system includes a dedicated computer doing calculation and evaluation jobs and several intelligent relays serving as last guards to carry out the pre-set remedies. In the intelligent system, P-V curves are used to determine the operating margin from the current operating point to the maximum operating point, or the nose point. This paper suggests an operating guide for voltage stability of a power system. The effectiveness of location ad amount of load shedding for the different power load models are studied.

  • PDF

Quick and Accurate Computation of Voltage Stability Margin

  • Karbalaei, Farid;Abasi, Shahriar
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • It is well known that the behavior of PV curves is similar to a quadratic function. This is used in some papers to approximate PV curves and calculate the maximum-loading point by minimum number of power flow runs. This paper also based on quadratic approximation of the PV curves is aimed at completing previous works so that the computational efforts are reduced and the accuracy is maintained. To do this, an iterative method based on a quadratic function with two constant coefficients, instead of the three ones, is used. This simplifies the calculation of the quadratic function. In each iteration, to prevent the calculations from diverging, the equations are solved on the assumption that voltage magnitude at a selected load bus is known and the loading factor is unknown instead. The voltage magnitude except in the first iteration is selected equal to the one at the nose point of the latest approximated PV curve. A method is presented to put the mentioned voltage in the first iteration as close as possible to the collapse point voltage. This reduces the number of iterations needed to determine the maximum-loading point. This method is tested on four IEEE test systems.

An Adaptive Undervoltage Load Shedding Against Voltage Collapse Based Power Transfer Stability Index

  • Nizam, Muhammad;Mohamed, Azah;Hussain, Aini
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.420-427
    • /
    • 2007
  • This paper highlights the comparison of a proposed methods named adaptive undervoltage load shedding based PTSI techniques for undervoltage load shedding and two previous methods named Fixed Shed Fixed Delay (FSFD) and Variable Shed Variable Delay (VSVD) for avoiding voltage collapse. There are three main area considerations in load shedding schemes as the amount of load to be shed, the timing of load shedding event, and the location where load shed is to be shed. The proposed method, named as adaptive UVLS based PTSI seem to be most appropriate among the uncoordinated schemes. From the simulation result can be shown the Adaptive UVLS based PTSI give faster response, accurate and very sensitive control for the UVLS control technique. This technique is effectively when calculating the amount to be shed. Therefore, it is possible to bring the voltage to the threshold value in one step. Thus, the adaptive load shedding can effectively reduce the computational time for control strategy.