• 제목/요약/키워드: Voltage and frequency controller

검색결과 403건 처리시간 0.03초

A Seamless Transfer Algorithm Based on Frequency Detection with Feedforward Control Method in Distributed Generation System

  • Kim, Kiryong;Shin, Dongsul;Lee, Jaecheol;Lee, Jong-Pil;Yoo, Dong-Wook;Kim, Hee-Je
    • Journal of Power Electronics
    • /
    • 제15권4호
    • /
    • pp.1066-1073
    • /
    • 2015
  • This paper proposes a control strategy based on the frequency detection method, comprising a current control and a feed-forward voltage control loop, is proposed for grid-interactive power conditioning systems (PCS). For continuous provision of power to critical loads, PCS should be able to check grid outages instantaneously. Hence, proposed in the present paper are a frequency detection method for detecting abnormal grid conditions and a controller, which consists of a current controller and a feedforward voltage controller, for different operation modes. The frequency detection method can detect abnormal grid conditions accurately and quickly. The controller which has current and voltage control loops rapidly helps in load voltage regulation when grid fault occurs by changing reference and control modes. The proposed seamless transfer control strategy is confirmed by experimental results.

공진 제어기를 이용한 LLC 컨버터의 출력전압 120Hz 맥동저감에 관한 연구 (A Study on 120Hz Output Voltage Ripple Reduction of LLC Converter using Resonant Controller)

  • 소병철;이상리;김학원;조관열;황순상;최은석
    • 전력전자학회논문지
    • /
    • 제17권4호
    • /
    • pp.345-352
    • /
    • 2012
  • This paper proposes a new method to reduce 120Hz output voltage ripple of LLC converter using resonant voltage controller. This method can reduce the 120Hz output voltage ripple with very high gain at this frequency by the resonant controller with previous PI voltage controller. The reason why the voltage ripple can be reduced is explained by the Bode diagram comparing with the previous PI controller. The simulation with Matlab/Simulink is carried out for this resonant controller and the simulation results show that resonant controller can reduce the 120Hz output voltage ripple. Experiments with DSP controller also carried out and the experimental results also show that the usefulness of the proposed voltage controller.

NEURAL NETWORK CONTROLLER FOR A PERMANENT MAGNET GENERATOR APPLIED IN WIND ENERGY CONVERSION SYSTEM

  • Eskander Mona N.
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.656-659
    • /
    • 2001
  • In this paper a neural network controller for achieving maximum power tracking as well as output voltage regulation, for a wind energy conversion system(WECS) employing a permanent magnet synchronous generator, is proposed. The permanent magnet generator (PMG) supplies a dc load via a bridge rectifier and two buck-boost converters. Adjusting the switching frequency of the first buck-boost converter achieves maximum power tracking. Adjusting the switching frequency of the second buck-boost converter allows output voltage regulation. The on-times of the switching devices of the two converters are supplied by the developed neural network(NN). The effect of sudden changes in wind speed ,and/or in reference voltage on the performance of the NN controller are explored. Simulation results showed the possibility of achieving maximum power tracking and output voltage regulation simultaneously with the developed neural network controller. The results proved also the fast response and robustness of the proposed control system.

  • PDF

1기 무한모선 전력계통의 적응 전압 제어와 거버너를 이용한 주파수 진동의 억제 (Adaptive Voltage Control of a Single Machine Infinite Bus(SMIB) Power System with Governor Control for Reduced Oscillation of the Frequency)

  • 김석균;윤태웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.51-52
    • /
    • 2008
  • In this paper, we propose two control schemes. The first control scheme is an adaptive passivity-based excitation control which regulates the terminal voltage to its reference. This controller is obtained through two steps: firstly, a simple direct adaptive passivation controller is designed for the power system with parametric uncertainties; then a linear PI controller is applied to converge the terminal voltage to its reference. The second control scheme is a linear governor control which consists of the frequency and the mechanical power. It is shown that the internal dynamics are locally stable with controllable damping. In the end, the boundness of all electrical variables, the frequency, the mechanical power, and the convergence of the terminal voltage to its reference can be achieved by these control schemes.

  • PDF

Current Control Scheme of High Speed SRM Using Low Resolution Encoder

  • Khoi, Huynh Khac Minh;Ahn, Jin-Woo;Lee, Dong-Hee
    • Journal of Power Electronics
    • /
    • 제11권4호
    • /
    • pp.520-526
    • /
    • 2011
  • This paper presents a balanced soft-chopping circuit and a modified PI controller for a high speed 4/2 Switched Reluctance Motor (SRM) with a 16 pulse per revolution encoder. The proposed balanced soft-chopping circuit can supply double the switching frequency in the fixed switching frequency of power devices to reduce current ripple. The modified PI controller uses maximum voltage, back-emf voltage and PI control modes to overcome the over-shoot current due to the time delay effect of current sensing. The maximum voltage mode can supply a fast excitation current with consideration of the hardware time delay. Then the back-emf voltage mode can suppress the current over-shoot with consideration of the feedback signal delay. Finally, the PI control mode can adjust the phase current to a desired value with a fast switching frequency due to the proposed balanced soft-chopping technology.

Influence of imperfection on the smart control frequency characteristics of a cylindrical sensor-actuator GPLRC cylindrical shell using a proportional-derivative smart controller

  • Zare, Reza;Najaafi, Neda;Habibi, Mostafa;Ebrahimi, Farzad;Safarpour, Hamed
    • Smart Structures and Systems
    • /
    • 제26권4호
    • /
    • pp.469-480
    • /
    • 2020
  • This is the first research on the smart control and vibration analysis of a Graphene nanoplatelets (GPLs) Reinforced Composite (GPLRC) porous cylindrical shell covered with piezoelectric layers as sensor and actuator (PLSA) in the framework of numerical based Generalized Differential Quadrature Method (GDQM). The stresses and strains are obtained using the First-order Shear Deformable Theory (FSDT). Rule of the mixture is employed to obtain varying mass density and Poisson's ratio, while the module of elasticity is computed by modified Halpin-Tsai model. The external voltage is applied to sensor layer and a Proportional-Derivative (PD) controller is used for sensor output control. Governing equations and boundary conditions of the GPLRC cylindrical shell are obtained by implementing Hamilton's principle. The results show that PD controller, length to radius ratio (L/R), applied voltage, porosity and weight fraction of GPL have significant influence on the frequency characteristics of a porous GPLRC cylindrical shell. Another important consequence is that at the lower value of the applied voltage, the influence of the smart controller on the frequency of the micro composite shell is much more significant in comparison with the higher ones.

유도전동기 자가 진단 및 상수 추정을 위한 고주파 전류 제어기 구현 (Implementation of High Frequency Current Controller for Self-Sensing Induction Motors)

  • 권영수;석줄기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.144-146
    • /
    • 2007
  • High frequency voltage signal injection have been widely used but they have some problems like over current protection. High frequency current signal injection and feedback control are more stable than voltage signal injection. In this paper, high frequency current controller for self-sensing and parameter estimation of induction motors is presented.

  • PDF

Analyzing and Designing a Current Controller for Circulating Current Reduction in Parallel Three-Phase Voltage-Source Inverters

  • Kim, Kiryong;Shin, Dongsul;Kim, Hee-Je;Lee, Jong-Pil
    • Journal of Power Electronics
    • /
    • 제18권2호
    • /
    • pp.502-510
    • /
    • 2018
  • A circulating current is a major problem caused by directly connecting voltage-source inverters (VSIs) in parallel. This circulating current occurs as a zero-sequence current between the inverters by specific switch states. Several studies have presented alternatives using hardware and software methods. When coupled inductors (CIs) are employed for the high-frequency circulating current, a controller is required to prevent the low-frequency circulating current from saturating the CIs. In this study, the zero-sequence circulating current and its alternatives are investigated using hardware and mathematical description. A high-performance circulating current controller is proposed by applying a repetitive controller to the zero-sequence current control loop. The proposed controller can effectively minimize the low-frequency circulating current without any data sharing between the inverters in unfavorable conditions. It can also be applicable to the modular configuration of parallel three-phase VSIs. Experimental results verify the performance of the proposed controller.

Design of a Digital PWM Controller for a Soft Switching SEPIC Converter

  • Nashed, Maged N.F.
    • Journal of Power Electronics
    • /
    • 제4권3호
    • /
    • pp.152-160
    • /
    • 2004
  • This paper presents analysis, modeling, and design of a low-harmonic, isolated, active-clamped SEPIC for future avionics applications. Simpler converter dynamics, high switching frequency, zero voltage-Transition-PWM switching, and a single-layer transformer construction result. This paper describes complete design of a digital controller for a high-frequency switching power supply. Guidelines for the minimum required resolution of the analog-to-digital converter, the pulse-width modulator, and the fixed-point computational unit is derived. A design example based on a SEPIC converter operating at the high switching frequency is presented. The controller design is based on direct digital design approach and standard root-locus techniques.

Digital Control Strategy for Single-phase Voltage-Doubler Boost Rectifiers

  • Cho, Young-Hoon;Mok, Hyung-Soo;Ji, Jun-Keun;Lai, Jih-Sheng
    • Journal of Power Electronics
    • /
    • 제12권4호
    • /
    • pp.623-631
    • /
    • 2012
  • In this paper, a digital controller design procedure is presented for single-phase voltage-doubler boost rectifiers (VDBR). The model derivation of the single-phase VDBR is performed in the s-domain. After that the simplified equivalent z-domain models are derived. These z-domain models are utilized to design the input current and the output dc-link voltage controllers. For the controller design in the z-domain, the traditional K-factor method is modified by considering the nature of the digital controller. The frequency pre-warping and anti-windup techniques are adapted for the controller design. By using the proposed method, the phase margin and the control bandwidth are accurately achieved as required by controller designers in a practical frequency range. The proposed method is applied to a 2.5 kVA single-phase VDBR for Uninterruptible Power Supply (UPS) applications. From the simulation and the experimental results, the effectiveness of the proposed design method has been verified.