• 제목/요약/키워드: Voltage Switching.

검색결과 3,312건 처리시간 0.029초

Novel energy recovery circuit using an address voltage source

  • Yi, Kang-Hyun;Moon, Gun-Woo
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 하계학술대회 논문집
    • /
    • pp.416-418
    • /
    • 2008
  • Cost effective and high efficiency energy recovery circuit (ERC) using an address voltage source is proposed. Different from prior ERC, the proposed circuit uses a voltage source to charge a panel and a current source to discharge the panel. As a result, it can be achieved zero voltage switching (ZVS) of switches in H-bridge inverter and zero current switching (ZCS) of switches of the ERC. Moreover, the proposed ERC can obtain high efficiency, high performance and the decrease of the cost and the size.

  • PDF

기생 인덕턴스에 의한 게이트 서지 전압 특성분석 (Analysis IGBT gate Surge voltage characterization by stray inductance)

  • 이건호
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2014년도 전력전자학술대회 논문집
    • /
    • pp.285-286
    • /
    • 2014
  • Recently, the unipolar gate power source is preferred in inverter system because of cost reduction reason. In this case, designer uses 0V source for turning-off the switching devices instead of negative voltage at Vee source. If the gate driver circuit has some stray inductance, the gate voltage would happen a surge voltage. This paper analyzes that of stray inductance effect during the switching behavior in the circuit and the proposed solutions were verified by pulse test.

  • PDF

치과 핸드피스용 고속 PMSM의 정현파 구동을 위한 인버터 직류 링크전압 제어기법 (DC link voltage control method in the sinusoidal current drive system for dental hand-piece PMSM)

  • 전금상;박상욱;박재성;김상희;안희욱
    • 한국기계가공학회지
    • /
    • 제12권4호
    • /
    • pp.16-21
    • /
    • 2013
  • This paper presents a DC link voltage control method to reduce the ripple current and the switching loss in the sinusoidal current drive system for the wide-speed range PMSM. The DC link voltage of the three phase inverter in the sinusoidal current drive system is designed by the back-EMF voltage at maximum speed of the PMSM. In general, the drive systems have used the constant DC link voltage without reference to the motor speed. The current ripple causes hysteresis loss and makes noise. In addition, the switching loss on the inverter increases in proportion to the rise in the DC link voltage. In this paper, we propose the variable DC link voltage control method to reduce the current ripple in the PMSM drive system. We show reduction effect of the current repple and the switching loss through simulation results.

고주파 결합 인덕터 직렬 공진형 ZCS-PFM 초퍼 제어 방식을 이용한 새로운 승압형 DC-DC 컨버터 (A Novel Boost DC-DC Converter using High Frequency Coupled Inductor Series Resonant ZCS-PFM Chopper Control Method)

  • 김홍신;허영환;문상필;박한석
    • 전기학회논문지P
    • /
    • 제66권2호
    • /
    • pp.63-68
    • /
    • 2017
  • This paper proposes a new non-isolated DC conversion circuit topology of the voltage source coupled inductor series resonant high-frequency PFM controlled boost chopper type DC-DC power converter using two in one IGBT power module, which can efficiently operate under a principle of zero current soft switching for wide output regulation voltage setting ranges and wide fluctuation of the input DC side voltage as well as the load variation ranges. Its steady state operating principle and the output voltage regulation characteristics in the open-loop-based output voltage control scheme without PI controller loop are described and evaluated from theoretical and experimented viewpoints. Finally, in this paper the computer-aided simulation steady-state analysis and the experimental results are presented in order to prove the effectiveness and the validity of voltage regulation characteristics of the proposed series resonant zero current soft switching boost chopper type DC-DC power converter circuit using IGBTs which is based on simple pulse frequency modulation strategy more than, 20kHz.

위상전이 풀-브리지 DC/DC 컨버터를 이용한 차세대 고속 전철용 Battery Charger에 관한 연구 (A Study on Battery Chargers for the next generation high speed train using the Phase-shift Full-bridge DC/DC Converter)

  • 조한진;김근용;이상석;김태환;원충연
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2009년도 춘계학술대회 논문집
    • /
    • pp.384-387
    • /
    • 2009
  • There is an increasing demand for efficient high power/weight auxiliary power supplies for use on high speed traction application. Many new conversion techniques have been proposed to reduce the voltage and current stress of switching components, and the switching losses in the traditional pulse width modulation (PWM) converter. Especially, the phase shift full bridge zero voltage switching PWM techniques are thought must desirable for many applications because this topology permits all switching devices to operate under zero voltage switching(ZVS) by using circuit parasitic components such as leakage inductance of high frequency transformer and power device junction capacitance. The proposed topology is found to have higher efficiency than conventional soft-switching converter. Also it is easily applicable to phase shift full bridge converter by applying an energy recovery snubber consisted of fast recovery diodes and capacitors.

  • PDF

Zero-Current-Switching in Full-Bridge DC-DC Converters Based on Activity Auxiliary Circuit

  • Chu, Enhui;Lu, Ping;Xu, Chang;Bao, Jianqun
    • Journal of Power Electronics
    • /
    • 제19권2호
    • /
    • pp.353-362
    • /
    • 2019
  • To address the problem of circulating current loss in the traditional zero-current switching (ZCS) full-bridge (FB) DC/DC converter, a ZCS FB DC/DC converter topology and modulation strategy is proposed in this paper. The strategy can achieve ZCS turn on and zero-voltage and zero-current switching (ZVZCS) turn off for the primary switches and realize ZVZCS turn on and zero-voltage switching (ZVS) turn off for the auxiliary switches. Moreover, its resonant circuit power is small. Compared with the traditional phase shift full-bridge converter, the new converter decreases circulating current loss and does not increase the current stress of the primary switches and the voltage stress of the rectifier diodes. The diodes turn off naturally when the current decreases to zero. Thus, neither reverse recovery current nor loss on diodes occurs. In this paper, we analyzed the operating principle, steady-state characteristics and soft-switching conditions and range of the converter in detail. A 740 V/1 kW, 100 kHz experimental prototype was established, verifying the effectiveness of the converter through experimental results.

Z-소스 인버터를 사용한 단상 계통 연계형 태양광 시스템 제어 (Control of Single-Phase Grid-Connected Photovoltaic System using a Z-Source Inverter)

  • 전태원;트란콴빈;김흥근
    • 전력전자학회논문지
    • /
    • 제13권5호
    • /
    • pp.369-375
    • /
    • 2008
  • 본 논문에서는 Z-소스 인버터를 사용하여 단상 계통 연계형 태양광 시스템을 제어하는 기법을 제시하였다. 인버터 스위칭소자의 전압 스트레스를 고려하여 광전지 출력전압에 대한 계통 연계형 Z-소스 인버터의 동작영역을 분석하였다. 스위칭 손실을 감소시키면서 shoot-through 시간을 효율적으로 제어하는 스위칭 패턴을 사용하였다. 시뮬레이션 및 32-비트 DSP를 사용한 실험을 통하여 계통연계형 Z-소스 인버터의 제어 시스템의 성능을 평가하였다.

Model-based Optimal Control Algorithm for the Clamp Switch of Zero-Voltage Switching DC-DC Converter

  • Ahn, Minho;Park, Jin-Hyuk;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • 제17권2호
    • /
    • pp.323-333
    • /
    • 2017
  • This paper proposes a model-based optimal control algorithm for the clamp switch of a zero-voltage switching (ZVS) bidirectional DC-DC converter. The bidirectional DC-DC converter (BDC) can accomplish the ZVS operation using the clamp switch. The minimum current for the ZVS operation is maintained, and the inductor current is separated from the input and output voltages by the clamp switch in this topology. The clamp switch can decrease the inductor current ripple, switching loss, and conduction loss of the system. Therefore, the optimal control of the clamp switch is significant to improve the efficiency of the system. This paper proposes a model-based optimal control algorithm using phase shift in a micro-controller unit. The proposed control algorithm is demonstrated by the results of PSIM simulations and an experiment conducted in a 1-kW ZVS BDC system.

옵셋 전압을 이용한 일정 스위칭 주파수의 Random PWM 기법 (A Novel Random PWM Technique with a Constant Switching Frequency Utilizing an Offset Voltage)

  • 김도겸;김상훈
    • 전력전자학회논문지
    • /
    • 제22권1호
    • /
    • pp.67-74
    • /
    • 2017
  • This study proposes a novel random pulse-width modulation (PWM) technique with a constant switching frequency utilizing a random offset voltage. The proposed PWM technique spreads switching harmonics by varying the position of an active voltage vector without a switching frequency variation. The implementation of the proposed PWM technique is simple because it does not require additional hardware and complex algorithm. The proposed random PWM technique is compared with the conventional PWM technique on the factors of harmonic spectrum, total harmonic distortion, and harmonic spread factor to confirm the harmonic spread effect. The validity of the proposed method is verified by simulations and experiments on a three-phase inverter drive system.

PWM 스위칭 기법에 의한 유도전동기 구동시스템의 전도노이즈 저감 (Conducted EMI reduction of Induction Motor Drive System by PWM Switching Technique)

  • 김흥주;이원철;김이훈;원충연;최세완;김규식;정동효
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2004년도 전력전자학술대회 논문집(2)
    • /
    • pp.769-773
    • /
    • 2004
  • Conventional SVPWM method has null switching vectors. Null switching vectors cause high common-mode voltage in induction motor drive system. The newly developed common mode voltage reduction PWM technique don't use zero switching state for inverter control. It is realized by changing software without additional hardware. Simulation and experimental results show that proposed method are reduced common mode voltage more than conventional method.

  • PDF