• Title/Summary/Keyword: Voltage Step-up Ratio

Search Result 119, Processing Time 0.024 seconds

Measurement Range Extension of AC High Voltage using two 200 kV Capacitive Dividers (200 kV 용량형 분압기 2대를 이용한 교류 고전압 측정범위 확장)

  • Jung, Jae-Kap;Lee, Sang-Hwa;Kang, Jeon-Hong;Kim, Myung-Soo;Kim, Yoon-Hyoung;Han, Sang-Gil;Jeong, Jin-Hye;Han, Sang-Ok;Joung, Jong-Man
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • The output voltage value of AC high voltage source has been usually obtained by multiplying low voltage value measured at both terminals of low voltage resistor by the dividing ratio of the high voltage capacitive divider. From the dividing ratio determined of each 200 kV capacitive divider, we have developed step-up method for measuring the output voltage up to 400 kV using two same type of 200 kV capacitive dividers connected in series. The theoretical dividing ratio of 400 kV capacitive dividers connected in series coincides with that of manufacturer's certification within measurement uncertainty. Thus, this developed step-up method makes it possible to extend the range of output voltage from 200 kV to 400 kV. Furthermore, The dividing ratio of divider under test obtained using this step-up method is consistent with that obtained using one 200 kV high voltage divider within corresponding uncertainties.

Design and FEM Analysis of Unipoled Disk-type Piezoelectric Transformer (Unipoled Disk-type 압전변압기의 설계 및 유한요소 해석)

  • Jung, Sung-Su;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.183-186
    • /
    • 2004
  • Unipoled piezoelectric transformers were designed with different input and output area ratios. The voltage step-up ratio increased proportionally with increasing the input area. The piezoelectric transformers operated in each transformer's resonance vibration mode. In this paper, ANSYS(FEM program) was used for analysing piezoelectric transformers. We compared with analysis and experimental results. The voltage step-up ratio showed maximum value in output area of small size. Output characteristics of piezoelectric transformers with various size were simulated. The result of analysis showed 2~7 times higher voltage step-up ratio than a experiment result.

  • PDF

Electrical Characteristics of the Piezoelectric Transformer as a Function of Piezoelectric Properties and Load Variations (압전특성 및 부하변화에 따른 압전트랜스포머의 전기적 특성)

  • 민석규;윤광희;류주현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.4
    • /
    • pp.289-296
    • /
    • 2001
  • The piezoelectric transformers of 2.0x10x48 ㎣ size were fabricated with PSN-PMN-PZT(T10 and PNW-PMN-PZT(T2) composition ceramics. Effects of micro structural and piezoelectric properties on the electrical characteristics of the piezoelectric transformers were investigated. Under the fixed output power of 6 W, temperature rise of T1 transformer at the optimum load was smaller than T2 one because of fine grain size effect. Voltage step-up ratio of T1 transformer showed higher value than T2 one T1 transformer showed an excellent properties with voltage step-up ratio of 12.41, efficiency of 95.23% and temperature rise of 7.2$^{\circ}C$ at 200㏀ load resistance. And also, T2 transformer showed an excellent properties with voltage step up ratio of 9.81, efficiency of 95.51% and temperature rise of 9$^{\circ}C$ at 150㏀ load resistance.

  • PDF

Design and ANSYS Analysis of Disk-type Piezoelectric Transformer (디스크형 압전변압기의 설계 및 유한요소 해석)

  • Jung, Sung-Su;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.813-816
    • /
    • 2004
  • Unipoled piezoelectric transformers were designed with different input and output area ratios. The voltage step-up ratio increased proportionally with increasing the input area. The piezoelectric transformers operated in each transformer's resonance vibration mode. In this paper, ANSYS(FEM program) was used for analysing piezoelectric transformers. We compared with analysis and experimental results. The voltage step-up ratio showed maximum value in output area of small size. Output characteristics of piezoelectric transformers with various size were simulated. The result of analysis showed $2\sim7$ times higher voltage step-up ratio than a experiment result.

  • PDF

Research on a New 12-Pulse Step-Up and Step-Down Aviation Auto-Transformer Rectifier

  • Jiang, Fan;Ge, Hong-juan;Dong, Xiao-xu;Zhang, Lu
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.266-276
    • /
    • 2018
  • This paper presents a new step-up and step-down multi-pulse auto-transformer rectifier unit (ATRU) topology. This structure can achieve a wide range of output voltages, which solves the problem of auto-transformer output voltage being difficult to regulate. Adding middle taps to the primary winding and reasonably setting the number of auto-transformer windings, constituted two groups of three-phase output voltages with a $30^{\circ}$ phase difference. Multi-pulse output DC voltage is obtained after a three-phase output voltage across two rectifier bridges and inter-phase reactor. Thus, the output DC voltage is related to the number and configuration of the auto-transformer winding. In this paper, the relationship between the voltage ratio of the auto-transformer and the ratio of winding, input current and auto-transformer kilovoltampere rating are deduced and validated by simulations. On this basis, the output voltage range is optimized. An experiment on two different voltage ratio principle prototypes was carried out to verify the correctness of the analysis design.

High Step-Up Converter with Hybrid Structure Based on One Switch

  • Hwu, K.I.;Peng, T.J.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1566-1577
    • /
    • 2015
  • A novel high step-up converter is presented herein, which combines the conventional buck-boost converter, the charge pump capacitor and the coupling inductor. By doing so, a quite high voltage conversion ratio due to not only the turns ratio but also the duty cycle, so as to increase design feasibility. It is noted that the denominator of the voltage conversion ratio is the square of one minus duty cycle. Above all, there is no voltage spike across the switch due to the leakage inductance and hence no passive or active snubber is needed, and furthermore, the used switch is driven without isolation and hence the gate driving circuit is relatively simple, thereby upgrading the industrial application capability of this converter. In this paper, the basic operating principles and the associated mathematical deductions are firstly described in detail, and finally some experimental results are provided to demonstrate the effectiveness of the proposed high step-up converter.

Electrical Characteristics of Disk-type Piezoelectric Transformer Poled with the Same Direction (동일 방향으로 분극된 디스크형 압전변압기의 전기적 특성)

  • 이종필;홍진웅
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.8
    • /
    • pp.688-692
    • /
    • 2003
  • For high voltage operation, a new type of piezoelectric transformer using radial vibration of disk, poled with the same direction was proposed. The piezoelectric ceramics was composed to PZT-PMN-PSN. The diameter and thickness of a disk type piezoelectric transformer were 45[mm]and 4[mm], respectively The surface ratio of driving electrode and generating electrode of the piezoelectric transformer was 2 : 1. The resonance characteristics of input admittance, step-up voltage ratio and power transmission efficiency of the piezoelectric transformer were measured by varying the load resistance(0.1∼70[kΩ]). As a result, both resonance frequency and step-up voltage ratio increased with increasing load resistance. The step-up voltage ratio was reached more than 60 times under no load resistance. The maximum efficiency of 97% at load resistance of 2kΩ was obtained.

High Efficiency High-Step-up Single-ended DC-DC Converter with Small Output Voltage Ripple

  • Kim, Do-Hyun;Kim, Hyun-Woo;Park, Joung-Hu;Jeon, Hee-Jong
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1468-1479
    • /
    • 2015
  • Renewable energy resources such as wind and photovoltaic power generation systems demand a high step-up DC-DC converters to convert the low voltage to commercial grid voltage. However, the high step-up converter using a transformer has limitations of high voltage stresses of switches and diodes when the transformer winding ratio increases. Accordingly, conventional studies have been applied to series-connect multioutput converters such as forward-flyback and switched-capacitor flyback to reduce the transformer winding ratio. This paper proposes new single-ended converter topologies of an isolation type and a non-isolation type to improve power efficiency, cost-effectiveness, and output ripple. The first proposal is an isolation-type charge-pump switched-capacitor flyback converter that includes an extreme-ratio isolation switched-capacitor cell with a chargepump circuit. It reduces the transformer winding number and the output ripple, and further improves power efficiency without any cost increase. The next proposal is a non-isolation charge-pump switched-capacitor-flyback tapped-inductor boost converter, which adds a charge-pump-connected flyback circuit to the conventional switched-capacitor boost converter to improve the power efficiency and to reduce the efficiency degradation from the input variation. In this paper, the operation principle of the proposed scheme is presented with the experimental results of the 100 W DC-DC converter for verification.

Single-Ended High-Efficiency Step-up Converter Using the Isolated Switched-Capacitor Cell

  • Kim, Do-Hyun;Jang, Jong-Ho;Park, Joung-Hu;Kim, Jung-Won
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.766-778
    • /
    • 2013
  • The depletion of natural resources and renewable energy sources, such as photovoltaic (PV) energy, has been highlighted for global energy solution. The PV power control unit in the PV power-generation technology requires a high step-up DC-DC converter. The conventional step-up DC-DC converter has low efficiency and limited step-up ratio. To overcome these problems, a novel high step-up DC-DC converter using an isolated switched capacitor cell is proposed. The step-up converter uses the proposed transformer and employs the switched-capacitor cell to enable integration with the boost inductor. The output of the boost converter and isolated switched-capacitor cell are connected in series to obtain high step-up with low turn-on ratio. A hardware prototype with 30 V to 40 V input voltage and 340 V output voltage is implemented to verify the performance of the proposed converter. As an extended version, another novel high step-up isolated switched-capacitor single-ended DC-DC converter integrated with a tapped-inductor (TI) boost converter is proposed. The TI boost converter and isolated-switched-capacitor outputs are connected in series to achieve high step-up. All magnetic components are integrated in a single magnetic core to lower costs. A prototype hardware with 20 V to 40 V input voltage, 340 V output voltage, and 100 W output power is implemented to verify the performance of the proposed converter.

Fabrication and Characteristics of Piezoelectric transformer using PMN-PZT (PMN-PZT 세라믹을 사용한 압전트랜스포머 제작과 특성)

  • 류주현;손은영;류규현;윤현상;정희승
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.13-20
    • /
    • 1997
  • In this paper, the voltage step-up ratio, efficiency and input impedance of the PMN-PZT cert- mic transformer(PT) were investigated for the variation of resonant frequency according to lead resistance. The output voltage and voltage step-up ratio are increased with the the increase of load resistance. The efficiency of PT showed the maxinum value of 91% at R$_{L}$ of 500k$\Omega$X>

  • PDF