• Title/Summary/Keyword: Voltage Sensor

Search Result 1,542, Processing Time 0.023 seconds

A study on single body design of optical current sensor and optical voltage sensor (광전류/광전압 센서의 일체화 설계에 관한 연구)

  • 김영수;김요희
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.6
    • /
    • pp.1596-1603
    • /
    • 1996
  • A single body type of fiber-optic current and voltae sensor using a rare earth doped YIG and a bismuth silicon oxide single crystsl is proposed, which is used for simultaneous measurement of the AC electric current and AC electric voltage over the trasmission lines. Experimental results showed that the fiber-optic current sensor has the maximum 7.5% error within the current range of 0A to 400A, and the fiber-optic voltage sensor has the maximum 0.87% error within the current range of 0V to 400V. The output waveforms of proposed fiber-optic sensor system has a good agreement with output waveforms of conductor current and voltage. Experimental results proved that the output of fiber-optic current sensor is not affected by the electric voltage applied to the fiber-optic voltage sensor, and also, that the output of fiber-optic voltage sensor is not affected by the electric current applied to the fiber-optic current sensor.

  • PDF

An implementation of fiber-optic sensors for impulse voltage and current measurement using a BSO and an YIG (BSO와 YIG를 이용한 임펄스 전압, 전류 측정용 광센서 구현)

  • 송재성;김영수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.8
    • /
    • pp.688-693
    • /
    • 2000
  • In this paper an optical voltage sensor and an optical current sensor which can be used for the measurement of impulse voltage and current are implemented. BSO single crystal is utilized as a voltage sensor(Pockels effect cell). An rare earth doped YIG is used as a current sensor(Faraday effect cell). A new signal processing technique is adopted not only to avoid the influences o external optical fiber pertubations of transmitting optical fiber but also to improves the frequency response characteristics of the fiber-optic voltage and current sensors. Experimental results show that optical voltage sensor has maximum 2.5% error within the voltage range from 0V to 500V. and optical current sensor has maximum 2.5% error within the current range and that of optical current sensor is about 1.5% within temperature range from -2$0^{\circ}C$ to 6$0^{\circ}C$. The proposed optical sensors have good frequency response characteristics within the frequency range from DC to 10MHz.

  • PDF

Low-Power Fully Digital Voltage Sensor using 32-nm FinFETs

  • Nguyen, H.V.;Kim, Youngmin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.1
    • /
    • pp.10-16
    • /
    • 2016
  • In this paper, a design for a fully digital voltage sensor using a 32-nm fin-type field-effect transistor (FinFET) is presented. A new characteristic of the double gate p-type FinFET (p-FinFET) is examined and proven appropriate for sensing voltage variations. On the basis of this characteristic, a novel technique for designing low-power voltage-to-time converters is presented. Then, we develop a digital voltage sensor with a voltage range of 0.7 to 1.1V at a 50-mV resolution. The performance of the proposed sensor is evaluated under a range of voltages and process variations using Simulation Program with Integrated Circuit Emphasis (SPICE) simulations, and the sensor is proven capable of operating under ultra-low power consumption, high linearity, and fairly high-frequency conditions (i.e., 100 MHz).

Output Characteristics of Current Sensor and Voltage Sensor Built in Epoxy Spacer (에폭시 스페이서에 내장되는 전류센서와 전압센서의 출력 특성)

  • Park, Seong-Hee;Kim, Kil-Sou;Kang, Seong-Hwa;Lim, Kee-Joe
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.361-366
    • /
    • 2007
  • In the distribution networks, it is necessary to develop small and light voltage and current sensor for compact and digitalized switchgears. For this purpose, some researches have been continuing till now, CT(current transformer) and VT(voltage transformer) are one of that research. But conventional CT and VT have some problems, that is, have big size and saturation characteristics because of used to iron core. In this paper, CS(current sensor) and VS(voltage sensor), have some merits measuring of current and voltage magnitude as a alternated conventional equipment, were studied. So, this paper shows the process CS and VS design method, equivalent circuit and output result, respectively. As a result of this test, proposed CS and VS have linearity for the output, no saturation.

Fiber optic voltage sensor using piezoelectric material (압전소자를 이용한 광섬유 전압센서)

  • Jun, Jin-Woo;Kim, Ho-Seong
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1874-1876
    • /
    • 1997
  • A fiber optic voltage sensor using photoelastic effect of a single-mode optical fiber, excited with a 632.8 nm He-Ne laser, is developed. The photoelastic effect is produced by piezoelectric effect for the voltage measurement. It is found that the detector output voltage is proportional to the applied voltage. Also, the frequency of the output voltage is equal to that of the applied voltage. Experimental results from a laboratory model demonstrate the feasibility of the sensor for field application in high-voltage systems.

  • PDF

Voltage Sensor using Fiberoptic Fabry-Perot Interferometry (패브리페로 간섭계를 이용한 광섬유 전압센서의 구현)

  • Kim, J.I.;Jeon, J.H.;Kim, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.236-238
    • /
    • 2002
  • A noble fiberoptic voltage sensor system utilizing an interferometric transducer has been introduced for high voltage measurement. The sensor system employs a fiberoptic Fabry-Perot interferometric strain sensor to convert voltage to displacement in an auxiliary movable electrode. The operating mechanism is based on the fact that the electrostatic force acting on the electrode system by the applied voltage results in strain variation on the Fabry-Perot interferometry. The experiment results show that the proposed voltage sensor has the potential to be extended to very high voltage system with appropriate auxiliary electrodes.

  • PDF

CCD Image Sensor with Variable Reset Operation

  • Park, Sang-Sik;Uh, Hyung-Soo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.2
    • /
    • pp.83-88
    • /
    • 2003
  • The reset operation of a CCD image sensor was improved using charge trapping of a MOS structure to realize a loe voltage driving. A DC bias generating circuit was added to the reset structure which sets reference voltage and holds the signal charge to be detected. The generated DC bias is added to the reset pulse to give an optimized voltage margin to the reset operation, and is controlled by adjustment of the threshold voltage of a MOS transistor in the circuit. By the pulse-type stress voltage applied to the gate, the electrons and holes were injected to the gate dielectrics, and the threshold voltage could be adjusted ranging from 0.2V to 5.5V, which is suitable for controlling the incomplete reset operation due to the process variation. The charges trapped in the silicon nitride lead to the positive and negative shift of the threshold voltage, and this phenomenon is explained by Poole-Frenkel conduction and Fowler-Nordheim conduction. A CCD image sensor with $492(H){\;}{\times}{\;}510(V)$ pixels adopting this structure showed complete reset operation with the driving voltage of 3.0V. The resolution chart taken with the image sensor shows no image flow to the illumination of 30 lux, even in the driving voltage of 3.0V.

Stabilization and Characteristics of An Electro-optical BGO Voltage Sensor (BGO광전압 센서의 안정화 및 동작특성)

  • Lee, Kyung-Shik
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.12
    • /
    • pp.1894-1899
    • /
    • 1990
  • We present an electro-optical voltage sensor. Crystalline bismuth germanate(BI4Ge3O12) used as the electro-opticla crystal exhibited linear birefringences of 1.7x10**-5 to 5.4x10**-4. And these birefringences were observed to be strongly temperature dependent. In order to improve the stability of the electro-opticlal voltage sensor, crystals (Bi4Ge3=12) were annealed and a compensation method was used. After applying this compensation method to the voltage sensor, the temperature stability, pressure stability, and vibration stability of the sensor were highly improved, Noise Equivalent Voltage of this sensor was a few mV/\ulcornerz.

  • PDF

Development for Measurement Range Extension Technique of AC High Voltage Source using Parallel Plates Electrode and Electric Field Sensor (평행판 전극과 전기장 센서를 이용한 교류 고전압 발생원의 측정범위 확장기술 개발)

  • Kang, Jeon-Hong;Ryu, Jae-Cheon;Lee, Sang-Hwa;Kim, Kyu-Tae;Kim, Myung-Soo;Han, Sang-Ok;Jung, Jae-Kap
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.9
    • /
    • pp.446-451
    • /
    • 2006
  • The output voltage value of AC high voltage source has been usually measured by employing the high voltage divider of inductive or capacitive type. In the study, we have developed a new method for measuring the output voltage up to 60kV using parallel plates electrode and electric field sensor, which are constructed by home-made. Unlikely the conventional method using a high voltage divider, this developed method makes it possible to extend the range of output voltage from known low voltage measurement to high voltage measurement. From the linearity measured between electric field and applied voltage in the output voltage range of 1kV-30kV, the output voltage value up to 60kV can be obtained by the electric field measurement using the electric field sensor. The output voltage value obtained using the method is consistent with that obtained using high voltage divider within corresponding uncertainties.

Design and Implementation Wake-up Module for Wireless Sensor Node using Dynamic Reference Voltage Demodulation Circuit (동적 기준전압 복조회로를 이용한 WBAN/USN 센서노드용 웨이크 업 모듈의 설계 및 구현)

  • Kim, Jong-Hong;Hwang, Ji-Hun;Park, Jun-Seok;Seong, Yeong-Rak;Oh, Ha-Ryoung
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.8 no.3
    • /
    • pp.152-156
    • /
    • 2009
  • This paper designs and implements wake up module for WBAN/USN sensor node which is using dynamic reference voltage demodulation circuit. When a comparator is used in a system for detecting received voltage level, comparator must have a reference voltage. However, the reference voltage is fixed, the system can communicate only a few range because received voltage level is changing widely due to distance of the wireless sensor nodes. Therefore, the proposed wake up module employs a dynamic reference voltage demodulation circuit for increasing communication range.

  • PDF