CCD Image Sensor with Variable Reset Operation

  • Published : 2003.06.01

Abstract

The reset operation of a CCD image sensor was improved using charge trapping of a MOS structure to realize a loe voltage driving. A DC bias generating circuit was added to the reset structure which sets reference voltage and holds the signal charge to be detected. The generated DC bias is added to the reset pulse to give an optimized voltage margin to the reset operation, and is controlled by adjustment of the threshold voltage of a MOS transistor in the circuit. By the pulse-type stress voltage applied to the gate, the electrons and holes were injected to the gate dielectrics, and the threshold voltage could be adjusted ranging from 0.2V to 5.5V, which is suitable for controlling the incomplete reset operation due to the process variation. The charges trapped in the silicon nitride lead to the positive and negative shift of the threshold voltage, and this phenomenon is explained by Poole-Frenkel conduction and Fowler-Nordheim conduction. A CCD image sensor with $492(H){\;}{\times}{\;}510(V)$ pixels adopting this structure showed complete reset operation with the driving voltage of 3.0V. The resolution chart taken with the image sensor shows no image flow to the illumination of 30 lux, even in the driving voltage of 3.0V.

Keywords

References

  1. E. R. Fossum, 'CMOS image sensor: electronic camera-on-a-chip', IEEE Trans. Electron Dev., 44, 1689 (1997) https://doi.org/10.1109/16.628824
  2. Y. Lee, S. Sung, J. Sim, C. Lee, T. Kim, J. Lee, B. Park, D. Lee and Y. Kim, 'Multi-level Vertical Channel SONOS Nonvolatile Memory using a Standard SOl Logic Process', J. Korean Phys. Soc., 41, 908 (2002)
  3. C. Hu, 'Hot-Electron affects in MOSFET's', IEDM Tech. Dig. 176 (1983)
  4. F. Driussi, D. Esseni, L. Selmi and F. Piazza, 'Damage Generation and Location in nand p-MOSFETs Biased in the Substrate-Enhanced Gate Current Regime', IEEE Trans. Electron Dev., 49, 787 (2002) https://doi.org/10.1109/16.998585
  5. Z. Ma, P. Lai, Z. Liu, P. Koand Y. Cheng, 'Mechanisms for Hot Carrier Induced Degradation in Reoxidized Nitrided Oxide n-MOSFET's under Combined AC/DC Stressing', IEEE Trans. Electron Dev., 40, 1112 (1993) https://doi.org/10.1109/16.214737
  6. C. Hu, S. Tam, F. Hsu, P. Ko, T. Chan and K. Terrill, Hot-Electron-induced MOSFET Degradation - Model, monitor, and improvement', IEEE Trans. Electron Dev., 32, 375 (1985) https://doi.org/10.1109/T-ED.1985.21952
  7. K. Mistry and B. Doyle, 'The Role of Electron Trap Creation in Enhanced Hot Carrier Degradation During AC Stress', IEEE Electron Dev. Lett., 11, 267 (1990) https://doi.org/10.1109/55.55276
  8. B. Doyle, M. Bourcerie, C. Bergonzoni, R. Benecci, A. Bravis, K. Mistry and A. Boudou, 'The Generation and Characterization of Electron and Hole Traps Created by Hole Injection During Low Gate Voltage Hot-Carrier Stressing of n-MOS Transistors', IEEE Electron Dev.,37, 1869 (1990) https://doi.org/10.1109/16.57138
  9. P. Bellens, P. Heremans, G. Groeneseneken, and H. Maes, 'Hot carrier effects in n-channel MOS transistors under alternate stress conditions', IEEE Electron Dev. Lett., 9, 232 (1988) https://doi.org/10.1109/55.700
  10. S. Wang, J. Sung, and S. Lyon,'Relationship between hole trapping and interface state generation in metal-oxide silicon structures', Appl. Phys. Lett., 52, 1431 (1988) https://doi.org/10.1063/1.99690
  11. W. Weber, 'Dynamic Stress experiments for understanding hot carrier degradation phenomena', IEEE Trans. Electron Dev., 35, 1476 (1988) https://doi.org/10.1109/16.2580
  12. J. Choi, P. Ko and C. Hu, 'Hot carrier induced MOSFET Degradation under AC Stress', IEEE Electron Dev. Lett., 8, 333 (1987) https://doi.org/10.1109/EDL.1987.26650
  13. B. Doyle, M. Bourcerie, J. Marchetaux and A. Boudou, 'Dynamic Channel Hot carrier degradation of NMOS transistors by enhanced electron-hole injection into the oxide', IEEE Electron Dev. Lett., 8, 237 (1987) https://doi.org/10.1109/EDL.1987.26615
  14. S. Park, H. Uh, S. Choi and J. Nam, 'High Sensitivity CCD Image Sensor using Capacitive Inverted Feedback Source Follower Circuit', J. Korean Phys. Soc., 41, 547 (2002)
  15. J. Kim, Y. Moon, J. Choi, B. Shin, I. Choi and K. Park, 'Charge Loss Mechanisms in a Stacked Gate Flash EEPROM Cell with a ONO Inter-Poly Dielectric', J. Korean Phys. Soc., 39, 1103 (2001)
  16. M. Aminzadeh, S. Nozaki and R. Giridhar, 'Conduction and Charge Trapping in Polysilicon-Silicon Nitride-Oxide-Silicon Structures Under Positive Gate Bias', IEEE Trans. Electron Dev., 35, 459 (1988) https://doi.org/10.1109/16.2480
  17. W. Zhu, T. Ma, T. Tamagawa, J. Kim and Y. Di, 'Current transport in metal/hafnium oxide/silicon structure', IEEE Trans. Electron Dev. Lett., 23, 97 (2002) https://doi.org/10.1109/55.981318
  18. W. Brown and J. Brewer, 'Nonvolatile Semiconductor Memory Technology', Chap. 1
  19. Yuan Taur and Tak H. Ning, 'Fundamentals of Modern VLSI Devices', Cambridge Univ. Press, (U.K. 1998), Chap. 2.4, pp. 95-96