• Title/Summary/Keyword: Voltage Level

Search Result 2,113, Processing Time 0.033 seconds

Impact of Contrast Agent for PET Images with CT-based Attenuation Correction (CT 영상을 이용한 감쇠 보정 시 조영제가 PET 영상에 미치는 영향)

  • Son Hye-Kyung;Turkington Timothy G.;Kwon Yun-Young;Jung Haijo;Kim Hee-Joung
    • Progress in Medical Physics
    • /
    • v.16 no.4
    • /
    • pp.192-201
    • /
    • 2005
  • Experiments and simulation were done to study the impact of contrast agent when CT scan was used to attenuation correction for PET Images in PET/CT system. Whole body phantom was imaged with various concentration of iodine-based contrast agent using CT. Mathematical emission and transmission density map with liver were made to simulate for whole body FDG Imaging. A variety of factors were estimated, including non-uniform enhancement of contrast agent, concentration and distribution size of contrast agent, noise level, image resolution, reconstruction algorithm, hypo-attenuation of contrast agent, and different time phases for contrast agent. Experimental studies showed that Hounsfield unit depends on the concentration of contrast agent and tube voltage. From the simulation data, contrast agents Introduced artifacts and degraded image quality on the attenuation-corrected PET images. The severity of these effects depends on a variety of factors, including the concentration and distribution size of contrast agent, the noise levels, and the Image resolution. These results Indicated that the impact of contrast agents should be considered with a full understanding of their potential problems in clinical PET/CT images.

  • PDF

Field Test and Performance Verification of On-board Oriented Train Control System (차상중심 열차제어시스템의 현장시험을 통한 성능검증)

  • Baek, Jong-Hyen
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5513-5521
    • /
    • 2015
  • There is an operational efficiency problem about wayside equipment applied to the domestic low-density branch as the equipment has been installed and operated similarly in the mainline. On-board oriented train control system, which has been developed for train safety and operation efficiency, ensures safe train operation without expensive ground control signal devices. Such system consists of on-board control system, wayside control system, and local control system. In this paper, the details of tests such as suitability test, communication test, and interface test are described by installing the on-board control system and wayside control system in field. Installation tests include checking power, voltage, cable connection, LED status, etc. Field applicability of the developed system is also verified through the dynamic operation tests with diverse scenarios, which are performed on the virtual line similar to the real environment including switch machine and level crossing gate. Dynamic operation tests were conducted for total 7 scenarios, and several tests were repeated for each scenario. The elapsed time for each operation was computed by analyzing main process log, and we could check that each operation was accomplished within several seconds. Furthermore, the developed system was verified through field test with an accredited institute, and testing certificates were issued.

Design and Fabrication of Digital 3-axis Magnetometer for Magnetic Signal from Warship (함정 자기신호 측정용 3-축 디지털 자기센서 설계 및 제작에 관한 연구)

  • Kim, Eunae;Son, Derac
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.4
    • /
    • pp.123-127
    • /
    • 2014
  • We developed a digital 3-axis flux-gate magnetometer for magnetic field signal measurement from warship during demagnetizing and degaussing processes. For the magnetometer design, we considered following points; the distance between magnetic field measurement station and magnetometer located under sea is about several 100 m, the magnetometer is exposed to magnetic field of ${\pm}1mT$ during demagnetizing process, and magnetometer is located under the sea about 30 m depth. To overcome long distance problem, magnetometer could be operated on wide input supply voltage range of 16~36 V using DC/DC converter, and for the data communication between the magnetometer and measurement station a RS422 serial interface was employed. To improve perming effect due to the ${\pm}1mT$ during demagnetizing process, magnetometer could be compensated external magnetic field up to ${\pm}1mT$ but magnetic field measuring rang is only ${\pm}100{\mu}T$. The perming effect was about ${\pm}2nT$ under ${\pm}1mT$ external magnetic field. The magnetometer was tested water vessel with air pressure up to 6 bar for the sea water pressure problems. Linearity of the magnetometer was better than 0.01 % in the measuring range of ${\pm}0.1mT$ and noise level was $30pT/\sqrt{Hz}$ at 1 Hz.

Annual Base Performance Evaluation on Cell Temperature and Power Generation of c-Si Transparent Spandrel BIPV Module depending on the Backside Insulation Level (스팬드럴용 투광형 결정계 BIPV창호의 후면단열 조건에 따른 연간 온도 및 발전성능 분석 연구)

  • Yoon, Jong-Ho;Oh, Myung-Hwan;Kang, Gi-Hwan;Lee, Jae-Bum
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.4
    • /
    • pp.24-33
    • /
    • 2012
  • Recently, finishing materials at spandrel area, a part of curtain-wall system, are gradually forced to improve thermal insulation performance in order to enhance the building energy efficiency. Also, Building Integrated Photovoltaics(BIPV) systems have been installed in the exterior side of the spandrel area, which is generally composed of windows. Those BIPVs aim to achieve high building energy efficiency and supply the electricity to building. However, if transparent BIPV module is combined with high insulated spandrel, it would reduce the PV efficiency for two major reasons. First, temperature in the air space, located between window layer and finishing layer of the spandrel area, can significantly increase by solar heat gain, because the space has a few air density relative to other spaces in building. Secondly, PV has a characteristics of decreased Voltage(Voc and Vmp) with the increased temperature on the PV cell. For these reasons, this research analyzed a direct interrelation between PV Cell temperature and electricity generation performance under different insulation conditions in the spandrel area. The different insulation conditions under consideration are 1) high insulated spandrel(HIS) 2) low insulated spandrel(LIS) 3) PV stand alone on the ground(SAG). As a result, in case of 1) HIS, PV temperature was increased and thus electricity generation efficiency was decreased more than other cases. To be specific, each cases' maximum temperature indicated that 1) HIS is $83.8^{\circ}C$, 2) LIS is $74.2^{\circ}C$, and 3) SAG is $66.3^{\circ}C$. Also, each cases yield electricity generation like that 1) HIS is 913.3kWh/kWp, 2) LIS is 942.8kWh/kWp, and 3) SAG is 981.3kWh/kWp. These result showed that it is needed for us to seek to the way how the PV Cell temperature would be decreased.

Effects of the Ge Prearmophization Ion Implantation on Titanium Salicide Junctions (게르마늄 Prearmophization 이온주입을 이용한 티타늄 salicide 접합부 특성 개선)

  • Kim, Sam-Dong;Lee, Seong-Dae;Lee, Jin-Gu;Hwang, In-Seok;Park, Dae-Gyu
    • Korean Journal of Materials Research
    • /
    • v.10 no.12
    • /
    • pp.812-818
    • /
    • 2000
  • We studied the effects of Ge preamorphization (PAM) on 0.25$\mu\textrm{m}$ Ti-salicide junctions using comparative study with As PAM. For each PAM schemes, ion implantations are performed at a dose of 2E14 ion/$\textrm{cm}^2$ and at 20keV energy using $^{75}$ /As+and GeF4 ion sources. Ge PAM showed better sheet resistance and within- wafer uniformity than those of As PAM at 0.257m line width of n +/p-well junctions. This attributes to enhanced C54-silicidation reaction and strong (040) preferred orientation of the C54-silicide due to minimized As presence at n+ junctions. At p+ junctions, comparable performance was obtained in Rs reduction at fine lines from both As and Ge PAM schemes. Junction leakage current (JLC) revels are below ~1E-14 A/$\mu\textrm{m}^{2}$ at area patterns for all process conditions, whereas no degradation in JLC is shown under Ge PAM condition even at edge- intensive patterns. Smooth $TiSi_2$ interface is observed by cross- section TEM (X- TEM), which supports minimized silicide agglomeration due to Ge PAM and low level of JLC. Both junction break- down voltage (JBV) and contact resistances are satisfactory at all process conditions.

  • PDF

Implementation of Multiple-Valued Adder and Multiplier Using Current-Mode CMOS (전류모드 CMOS에 의한 다치 가산기 및 승산기의 구현)

  • Seong, Hyeon-Kyeong
    • The KIPS Transactions:PartA
    • /
    • v.11A no.2
    • /
    • pp.115-122
    • /
    • 2004
  • In this paper, the multiple-valued adders and multipliers are implemented by current-mode CMOS. First, we implement the 3-valued T-gate and the 4-valued T-gate using current-mode CMOS which have an effective availability of integrated circuit design. Second we implement the circuits to be realized 2-variable 3-valued addition table and multiplication table over finite fields $GF(3^2)$, and 2-variable 4-valued addition table and multiplication table over finite fields $GF(4^2)$ with the multiple-valued T-gates. Finally, these operation circuits are simulated under $1.5\mutextrm{m}$ CMOS standard technology, $15\mutextrm{A}$ unit current, and 3.3V VDD voltage Spice. The simulation results have shown the satisfying current characteristics. The 3-valued adder and multiplier, and the 4-valued adder and multiplier implemented by current-mode CMOS is simple and regular for wire routing and possesses the property of modularity with cell array. Also, since it is expansible for the addition and multiplication of two polynomials in the finite field with very large m, it is suitable for VLSI implementation.

A Study on Micro-Electrode Pattern of Repair Process Using Electrohydrodynamic Printing System (전기수력학 프린팅 기술을 이용한 미세전극 패턴의 리페어 공정 적용에 관한 연구)

  • Yang, Young-Jin;Kim, Soo-Wan;Kim, Hyun-Bum;Yang, Hyung-Chan;Lim, Jong-Hwan;Choi, Kyung-Hyun
    • Clean Technology
    • /
    • v.22 no.4
    • /
    • pp.232-240
    • /
    • 2016
  • Recently, various research studies have been conducted and many are in progress for the suitable alternative materials for ITO based touch screen panel (TSP) due to limitations in size and flexibility. Various researches from all over the world have been attempted to fabricate the fine electrode less than $5{\mu}m$ for the rapid developing of display technology. Research is also being carried out in metal mesh methods using the existing technologies and alternative materials at commercial level. However, by using the existing technologies certain discrepancies are observed like low transparency and low yield which also results in the distortion of patterns. For repairing the damaged pattern, the conventional laser CVD technique has also been used but there are some challenges observed in CVD technique like achieving a stable fine electrode of $10{\mu}m$ or less and avoiding the formation of satellite drops. To overcome these issues, a new printing process named Electrohydrodynamic (EHD) printing, has been introduced by which $5{\mu}m$ fine patterns can be printed in one step. This EHDA printing technique has been applied to print very fine electrodes of $5{\mu}m$ or less by using conductive inks of various viscosities. This study also presents the optimized process parameters for printing $5{\mu}m$ fine electrode patterns during experiments by controlling the applied voltage and supply flow rate. The $5{\mu}m$ repair electrodes were fabricated for repairing $50{\mu}m$ shorted electrode samples.

Reliable and High Spatial Resolution Method to Identify the Number of MoS2 Layers Using a Scanning Electron Microscopy

  • Sharbidre, Rakesh Sadanand;Park, Se Min;Lee, Chang Jun;Park, Byong Chon;Hong, Seong-Gu;Bramhe, Sachin;Yun, Gyeong Yeol;Ryu, Jae-Kyung;Kim, Taik Nam
    • Korean Journal of Materials Research
    • /
    • v.27 no.12
    • /
    • pp.705-709
    • /
    • 2017
  • The electronic and optical characteristics of molybdenum disulphide ($MoS_2$) film significantly vary with its thickness, and thus a rapid and accurate estimation of the number of $MoS_2$ layers is critical in practical applications as well as in basic researches. Various existing methods are currently available for the thickness measurement, but each has drawbacks. Transmission electron microscopy allows actual counting of the $MoS_2$ layers, but is very complicated and requires destructive processing of the sample to the point where it will no longer be useable after characterization. Atomic force microscopy, particularly when operated in the tapping mode, is likewise time-consuming and suffers from certain anomalies caused by an improperly chosen set point, that is, free amplitude in air for the cantilever. Raman spectroscopy is a quick characterization method for identifying one to a few layers, but the laser irradiation causes structural degradation of the $MoS_2$. Optical microscopy works only when $MoS_2$ is on a silicon substrate covered with $SiO_2$ of 100~300 nm thickness. The last two optical methods are commonly limited in resolution to the micrometer range due to the diffraction limits of light. We report here a method of measuring the distribution of the number of $MoS_2$ layers using a low voltage field emission electron microscope with acceleration voltages no greater than 1 kV. We found a linear relationship between the FESEM contrast and the number of $MoS_2$ layers. This method can be used to characterize $MoS_2$ samples at nanometer-level spatial resolution, which is below the limits of other methods.

Synthesis and Characterization of π-Conjugated Polymer Based on Phthalimide Derivative and its Application for Polymer Solar Cells (프탈이미드 유도체를 기본으로 하는 공액고분자의 합성과 특성, 그리고 태양전지의 적용)

  • Do, Thu Trang;Ha, Ye Eun;Kim, Joo Hyun
    • Polymer(Korea)
    • /
    • v.37 no.6
    • /
    • pp.694-701
    • /
    • 2013
  • A new copolymer named T-TI24T (poly((5,5-(2-butyl-5,6-bisdecyloxy-4,7-di-thiophen-2-yl-isoindole-1,3-dione))- alt-(2,5-thiophene))) based on phthalimide derivative and thiophene is synthesized by the Stille-coupling reaction. The polymer shows relatively high number average molecular weight of 86500 g/mol with good solubility in common organic solvents such as chloroform, 1,2-dichlorobenzene, and toluene and is thermally stable up to $380^{\circ}C$. Besides, it possesses a relatively low highest occupied molecular orbital (HOMO) energy level of -5.33 eV, promising the high open circuit voltage ($V_{oc}$) for photovoltaic applications. Active layer solution of polymer T-TI24T-as a donor and (6)-1-(3-(methoxycarbonyl)- {5}-1-phenyl[5,6]-fullerene (PCBM)-as an acceptor in different weight ratios is applied to fabricate the polymer solar cell devices. The ratio of polymer/PCBM affects the solar cell efficiency and the best performance exhibits in the device with polymer/PCBM = 1:3 (w/w), which shows a power conversion efficiency (PCE) of 0.199% and a $V_{oc}$ of 0.99 V, respectively. Even though the device shows the very low PCE, the $V_{oc}$ is higher than that of well known bulk heterojunction type solar cell based on P3HT:PC61BM (c.a. 0.5 V).

Volume Change of Spiral Computed Tomography due to the Changed in the Parameters (파라미터의 변경에 따라 나선형 전산화 단층 촬영의 체적 변화)

  • Lee, JunHaeng
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.4
    • /
    • pp.307-311
    • /
    • 2013
  • This study examined the change of artifact volume by analyzing the level of image change associated with the setting of threshold through 3D imaging in scan parameter(slice thickness and helical pitch) and 3D image reconstruction to explore whether the presence of pathology was fully distinguished when CT was taken by lower dose than the existent dose to reduce exposure. Furthermore, this study attempted to investigate Scan Parameter acceptable in CT to reduce exposure dose. For materials and methods, silicon was used to produce samples. Five spherical samples were produced at 10-millimeter intervals(50, 40, 30, 20, and 10 mm) in diameter and were fixed at 120 Kvp of tube voltage and 50 mA of tube current. Varied slab thickness((1.0, 2.0, 3.0, 5.0, and 7.0mm) and Helical Pitch(1.5, 2.0, 3.0) were scanned. The image at an interval of 1.0, 2.0, 3.0, 5.0, and 7.0mm was transmitted to the workstation. Threshold(-200, -50, 50 ~ 1,000) was changed using the volume rendering technique, 3D image was reconstructed, and artifact volume was measured. In conclusion, 1.5 of Helical Pitch showed the least change of volume and 3.0 of helical pitch showed the greatest reduction of volume change. The experiment suggested that as slice thickness was increased, artifact volume was decreased more than actual measurement. Furthermore, in the 3D image reconstruction, when the range of threshold was set as -200 ~1,000, artifact volume was changed the least. Based on the results, it is expected to have an effect of reducing exposure dose.