• 제목/요약/키워드: Volatile Organic Compounds(VOCs)

검색결과 685건 처리시간 0.027초

신너사용 작업장의 유기용제 노출 및 $TiO_2$ 광촉매를 이용한 BTX처리에 관한 연구 (Organic Solvent Exposure of Thinner-Using Occupation and Its Treatment by Means of $TiO_2$ Photocatalyst)

  • 양원호;김현용;손부순;박종안
    • 환경위생공학
    • /
    • 제17권2호
    • /
    • pp.26-33
    • /
    • 2002
  • Ultimate objective of industrial hygiene is the prevention of health impairment that may result from exposure to chemicals at workplace. Workers in solvent thinner-using occupation environment may be highly exposed to VOCs (volatile organic compounds) because solvent thinner has been used extensively such as painting, spraying, degreasing, coating and so on in Korea. The purpose of this study was to recognize, evaluate, and propose the control methods of VOCs from solvent thinner-using workplace. Five target volatile organic compounds (benzene, toluene, ethylbenzene, o-xylene, and m-xylene) were monitored in H company of Shiwa Industrial Complex and analyzed in perosnal, occupational indoor and outdoor during working hours simultaneously. Engineering control such as local ventilation should be made in considering the long-term exposure, though measured VOCs concentration did not exceed the workplace exposure standards. In addition, air cleaning device should be installed in local ventilation because Shiwa Industrial Complex has had the serious ambient air pollution. Currently, environmental purification using $TiO_2$ photocatalyst have attracted a great deal of attention with increasing number of recent environmental problems. In this study, $TiO_2$ sol coated on the ceramic bead was prepared by sol-gel method and the photodegradation of target compounds was investigated in gas phase by the exposure to UV-A lamp(365nm) in a batch system.

다공성 Al/Al$_2$O$_3$ 복합층이 피복된 휘발성 유기화합물 촉매산화용 금속 monolith 반응기의 개발 (Preparation of wire-mesh honeycomb coated with Al/Al$_2$O$_3$ composite for catalytic combustion of volatile organic compounds(VOCs))

  • 양경식;최진성;정종식
    • 한국대기환경학회:학술대회논문집
    • /
    • 한국대기환경학회 2003년도 춘계학술대회 논문집
    • /
    • pp.377-378
    • /
    • 2003
  • 휘발성유기화합물(volatile organic compounds, 이하 'VOCs')은 대기 중에서 태양광선에 의해 질소산화물과 광화학적 산화반응을 일으켜 그 결과 지표면의 오존농도를 증가시켜 스모그(Smog) 현상을 초래시키는 모든 유기화합물을 일컫는다. 이러한 VOCs를 제거하기 위하여 여러 방법이 제시되고 있는데, 촉매를 이용하여 VOCs를 산화시켜 제거하는 촉매 산화법은 촉매사용으로 인하여 소각법에 비하여 조업온도를 많이 떨어뜨릴 수 있으므로, 에너지 소비의 절감과 이에 따른 제2의 오염물질의 배출이 거의 없다는 점에서 유리한 면을 갖고 있어 VOCs 제거에 가장 적합한 방법이라고 할 수 있다. (중략)

  • PDF

수중 휘발성 유기물질의 분석에 관한 연구 (Study on Analysis of Volatile Organic Compounds (VOCs) in Water)

  • 전옥경;서병태;이정자;이덕행
    • 한국환경보건학회지
    • /
    • 제19권2호
    • /
    • pp.16-22
    • /
    • 1993
  • In recent years, great concern for the improvement of drinking water quality has been arising due to the contamination of the raw and treated water. So trihalomethanes (THMs) and some other volatile organic compounds (VOCs), potential carcinogenic substances, rendered the government to take some countermeasurements for clean water service in the dimension of public health. In this study, we used liquid-liquid extraction method as a rapid simple method for determination of VOCs through eluation with n-Pentane in water. The aim with the present study has been to determine the changes of recovery and reproducibility of the method under the various conditions in extraction solvents, solvent ratio and extraction time, and to observe the concentrations under the various temperature and pH during storage.

  • PDF

휘발성 유기화합물(VOCs)의 촉매산화 전환에서 결합구조의 영향 및 속도특성 (Influence of VOCs Structure on Catalytic Oxidation Kinetics)

  • 이승범;윤용수;홍인권;이재동
    • 환경위생공학
    • /
    • 제15권4호
    • /
    • pp.44-51
    • /
    • 2000
  • The reactivity of a range of volatile organic compounds with differing functional groups observed over 0.5% $Pt/{\gamma}-Al_2O_3$ catalyst. In general, the reactivity pattern observed was alcohols > aromatics > ketones > cycloalkane > alkanes. The deep conversion was increased as reaction temperature was increased. A correlation was found between the reactivity of the individual and the strength of the weakest C-Hbond in structure. The conversion of volatile organic compounds increases in order methanol > benzene > cyclohexane > MEK > n-hexane. That is the effect of differences in total dissociation energy. An apparent zeroth-order kinetics with respect to inlet concentration have been observed. A simple multicomponent model based on two-stage redox model made reasonably good predictions of conversion over the range of parameters studied. thus, the catalytic process was suggested as the new VOCs control technology.

  • PDF

가연성 유해가스 처리를 위한 연소기 개발 (Development of Combustor for Combustible Hazardous Gas)

  • 전영남;채종성;김미환
    • 한국대기환경학회지
    • /
    • 제12권4호
    • /
    • pp.479-485
    • /
    • 1996
  • Volatile organic compounds are air pollutants exhausting from industrial process, evaporation of solvent, and so on. Most of VOCs are the combustible gas of low calorific value as it is diluted by air. The systems burning such a hazardous gas need to increase enthalpy in order to increase flame stability. In this study an incinerator with reciprocating flow in the honeycomb ceramic has been used for the experiment of VOCs control. By the reciprocating flow system, the enthalpy of combustion gas is effectively regenerated into the enthalpy increases of the combustible gas through the honeycomb ceramic, which provides a heat storage. The position of the reaction zone is strongly dependent on the parameters of mixture velocity and time frequency. Flame front is changed to the point where burning velocity is coincided with burning velocity in the honeycomb ceramic. In this system it is important that flame front should be located symmetrically at the center of honeycomb ceramic for the purpose of increasing the reaction rate at one point. Peak temperature becomes higher with decreasing time frequency, at which the flow direction is regularly reversed.

  • PDF

Drosophila melanogaster as a Model for Studying Aspergillus fumigatus

  • AL-Maliki, Hadeel Saeed;Martinez, Suceti;Piszczatowski, Patrick;Bennett, Joan W.
    • Mycobiology
    • /
    • 제45권4호
    • /
    • pp.233-239
    • /
    • 2017
  • Drosophila melanogaster is a useful model organism that offers essential insights into developmental and cellular processes shared with humans, which has been adapted for large scale analysis of medically important microbes and to test the toxicity of heavy metals, industrial solvents and other poisonous substances. We here give a brief review of the use of the Drosophila model in medical mycology, discuss the volatile organic compounds (VOCs) produced by the opportunistic human pathogen, Aspergillus fumigatus, and give a brief summary of what is known about the toxicity of some common fungal VOCs. Further, we discuss the use of VOC detection as an indirect indicator of fungal growth, including for early diagnosis of aspergillosis. Finally, we hypothesize that D. melanogaster has promise for investigating the role of VOCs synthesized by A. fumigatus as possible virulence factors.

Breath Gas Sensors for Diabetes and Lung Cancer Diagnosis

  • Byeongju Lee;Jin-Oh Lee;Junyeong Lee;Inkyu Park;Dae-Sik Lee
    • 센서학회지
    • /
    • 제32권1호
    • /
    • pp.1-9
    • /
    • 2023
  • Recently, the digital healthcare technologies including non-invasive diagnostics based on Internet of Things (IOT) are getting attention. Human exhaled breath contains a variety of volatile organic compounds (VOCs), which can provide information of malfunctions of the body and presence of a specific disease. Detection of VOCs in exhaled breath using gas sensors are easy to use, safe, and cost-effective. However, accurate diagnosis of diseases is challenging because changes in concentration of VOCs are extremely small and lots of body factors directly or indirectly influence to the conditions. To overcome the limitations, highly selective nanosensors and artificial intelligent electronic nose (E-nose) systems have been mainly researched in recent decades. This review provides brief reviews of the recent studies for diabetes and lung cancer diagnosis using nanosensors and E-nose systems.

Validation of Human HazChem Array Using VOC Exposure in HL-60 Cells

  • Oh, Moon-Ju;Kim, Seung-Jun;Kim, Jun-Sub;Kim, Ji-Hoon;Park, Hye-Won;Kim, Youn-Jung;Ryu, Jae-Chun;Hwang, Seung-Yong
    • Molecular & Cellular Toxicology
    • /
    • 제4권1호
    • /
    • pp.45-51
    • /
    • 2008
  • Volatile Organic Compounds (VOCs) have been shown to cause nervous system disorders through skin contact or respiration, and also cause foul odors even at low densities in most cases. Also, as a compound itself, VOCs are directly harmful to the environment and to the human body, and may participate in photochemical reactions in air to create secondary pollutants. In this study, HL-60 cells were treated with volatile organic compounds, including ethylbenzene and trichloroethylene, at a value of $IC_50$. Then, the in house-prepared Human HazChem arrayer was utilized in order to compare the gene expression between the two VOCs. After hybridization, 8 upregulated genes and 8 downregulated genes were discovered in the HazChem array. The upregulated genes were identified as SG15, TNFSF10, PRNP, ME1, NCOA4, SRXN1, TXNRD1, and XBP1. The downregulated genes were identified as MME, NRF1, PRARBP, CALCA, CRP, BAX, C7 or f40, and FGFR1. Such results were highly correlated with the quantitative RT-PCR results. The majority of the 16 genes were related with the characteristics of VOCs, including respiratory mechanism, apoptosis, and carcinogenesis-associated genes. Our data showed that our human HazChem array can be used to monitor hazardous materials via gene expression profiling.

조선소 밀집지역의 휘발성유기화합물 농도분포 특성에 관한 사례 연구 (Concentration Distribution of Volatile Organic Compounds in the Ambient Air of an Industrial Shipbuilding Complex : A Case Study)

  • 이명은;박은옥;정재우
    • 대한환경공학회지
    • /
    • 제37권6호
    • /
    • pp.380-386
    • /
    • 2015
  • 조선소 밀집지역의 휘발성유기화합물 농도의 공간 및 시간적 분포특성을 측정하였으며 이를 기반으로 지역적 특성을 평가하였다. 모든 시료채취지점에서 측정된 주요 휘발성유기화합물은 조선소 내부의 실내도장시설에서 측정된 물질들과 밀접한 연관성을 가지는 것으로 나타나 조선소 내부에서 이루어지는 도장작업이 주변지역의 휘발성유기화합물의 중요한 배출원임을 보여준다. 휘발성유기화합물의 분포를 결정하는 주된 요인들은 시료채취지점과 선박제조 작업장 사이의 거리와 선박제조 작업의 강도인 것으로 나타났다. 모든 시료채취지점에서 일반적인 도시 대기에서 관찰되는 VOCs 농도의 일반적인 시계열적 변화경향을 압도하는 도장작업의 강도에 따라 매우 넓은 범위의 휘발성유기화합물 농도가 관찰되었다.

주택에 설치한 온돌 마루 및 붙박이 가구에서 발생하는 휘발성유기화합물의 농도 감소 예측 (Prediction of Concentration Decay of Volatile Organic Compounds from Ondol Floor and Furniture)

  • 조현;방승기;백용규;손장열
    • KIEAE Journal
    • /
    • 제5권1호
    • /
    • pp.51-57
    • /
    • 2005
  • In this study, time-dependent concentration variations of VOCs from fixed furniture and Ondol floor widely used as finishing material of the floor were measured, and prediction equations were developed based on the measured results. VOCs were measured and analyzed based on EPA TO-17 and NIOSH 1500, 1501 method respectively, and GC/FID were used for the analysis of VOCs concentration. Measurements were carried out for 10 days after the installation of furniture and for 40 days after the installation of the floor in the residence constructed more than 10 years ago. In both case of floor and furniture installation, time-dependent concentration decay of VOCs can be properly converted into logarithmic scale. Especially in case of furniture, toluene showed the highest concentration and took longest time to decay. As a result of the prediction of VOCs concentration decay under different air change rate using estimated equations, concentration decay rate of indoor VOCs increased rapidly as the air change rate also increased.