Browse > Article
http://dx.doi.org/10.5941/MYCO.2017.45.4.233

Drosophila melanogaster as a Model for Studying Aspergillus fumigatus  

AL-Maliki, Hadeel Saeed (Department of Plant Biology, The State University of New Jersey)
Martinez, Suceti (Department of Plant Biology, The State University of New Jersey)
Piszczatowski, Patrick (Department of Plant Biology, The State University of New Jersey)
Bennett, Joan W. (Department of Plant Biology, The State University of New Jersey)
Publication Information
Mycobiology / v.45, no.4, 2017 , pp. 233-239 More about this Journal
Abstract
Drosophila melanogaster is a useful model organism that offers essential insights into developmental and cellular processes shared with humans, which has been adapted for large scale analysis of medically important microbes and to test the toxicity of heavy metals, industrial solvents and other poisonous substances. We here give a brief review of the use of the Drosophila model in medical mycology, discuss the volatile organic compounds (VOCs) produced by the opportunistic human pathogen, Aspergillus fumigatus, and give a brief summary of what is known about the toxicity of some common fungal VOCs. Further, we discuss the use of VOC detection as an indirect indicator of fungal growth, including for early diagnosis of aspergillosis. Finally, we hypothesize that D. melanogaster has promise for investigating the role of VOCs synthesized by A. fumigatus as possible virulence factors.
Keywords
Aspergillus fumigatus; Drosophila melanogaster; Volatile organic compounds;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Inamdar AA, Bennett JW. A common fungal volatile organic compound induces a nitric oxide mediated inflammatory response in Drosophila melanogaster. Sci Rep 2014;4:3833.
2 Denning DW, Anderson MJ, Turner G, Latge JP, Bennett JW. Sequencing the Aspergillus fumigatus genome. Lancet Infect Dis 2002;2:251-3.   DOI
3 Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS,Arroyo J, Berriman M, Abe K, Archer DB, Bermejo C, et al. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 2005; 438:1151-6.   DOI
4 Agarwal R. Allergic bronchopulmonary aspergillosis. Chest 2009;135:805-26.   DOI
5 Latge JP, Steinbach WJ. Aspergillus fumigatus and aspergillosis. Vol. 568. Washington, DC: ASM Press; 2009.
6 Latge JP. Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev 1999;12:310-50.
7 Marr KA, Petterson T, Denning D. Aspergillosis: pathogenesis, clinical manifestation and therapy. Infect Dis Clin North Am 2002;16:875-94.   DOI
8 Fischer G, Dott W. Relevance of airborne fungi and their secondary metabolites for environmental, occupational and indoor hygiene. Arch Microbiol 2003;179:75-82.   DOI
9 Pennerman KK, AL-Maliki HS, Lee S, Bennett JW. Fungal volatile organic compounds (VOCs) and the genus Aspergillus. In: Gupta VK, editor. New and future developments in microbial biotechnology and bioengineering, Aspergillus system properties and applications. Amsterdam: Elsevier; 2016. p. 95-115.
10 Seltzer JM. Building-related illnesses. J Allergy Clin Immunol 1994;94(2 Pt 2):351-61.   DOI
11 Zhang J, Zhang J, Chen Q, Yang X. A critical review on studies of volatile organic compound (VOC) sorption by building materials (RP-1097). ASHRAE Trans 2002;108:162-74.
12 Schwab CJ, Straus DC. The roles of Penicillium and Aspergillus in sick building syndrome. Adv Appl Microbiol 2004;55:215-38.
13 Fischer G, Schwalbe R, Moller M, Ostrowski R, Dott W. Species-specific production of microbial volatile organic compounds (MVOC) by airborne fungi from a compost facility. Chemosphere 1999;39:795-810.   DOI
14 Fiedler K, Schütz E, Geh S. Detection of microbial volatile organic compounds (MVOCs) produced by moulds on various materials. Int J Hyg Environ Health 2001;204:111-21.   DOI
15 Perl T, Junger M, Vautz W, Nolte J, Kuhns M, Borg‐von Zepelin M, Quintel M. Detection of characteristic metabolites of Aspergillus fumigatus and Candida species using ion mobility spectrometry-metabolic profiling by volatile organic compounds. Mycoses 2011;54:e828-37.   DOI
16 Van der Schee MP, Paff T, Brinkman P, van Aalderen WM, Haarman EG, Sterk PJ. Breathomics in lung disease. Chest 2015;147:224-31.   DOI
17 Takigawa T, Wang BL, Sakano N, Wang DH, Ogino K, Kishi R. A longitudinal study of environmental risk factors for subjective symptoms associated with sick building syndrome in new dwellings. Sci Total Environ 2009;407:5223-8.   DOI
18 Chambers ST, Bhandari S, Scott-Thomas A, Syhre M. Novel diagnostics: progress toward a breath test for invasive Aspergillus fumigatus. Med Mycol 2011;49 Suppl 1:S54-61.   DOI
19 Heddergott C, Calvo AM, Latge JP. The volatome of Aspergillus fumigatus. Eukaryot Cell 2014;13:1014-25.   DOI
20 Neerincx AH, Geurts BP, Habets MF, Booij JA, Van Loon J, Jansen JJ, Buydens LM, van Ingen J, Mouton JW, Harren FJ, et al. Identification of Pseudomonas aeruginosa and Aspergillus fumigatus mono- and co-cultures based on volatile biomarker combinations. J Breath Res 2016;10:016002.   DOI
21 Araki A, Kawai T, Eitaki Y, Kanazawa A, Morimoto K, Nakayama K, Shibata E, Tanaka M, Takigawa T, Yoshimura T, et al. Relationship between selected indoor volatile organic compounds, so-called microbial VOC, and the prevalence of mucous membrane symptoms in single family homes. Sci Total Environ 2010;408:2208-15.   DOI
22 Araki A, Kanazawa A, Kawai T, Eitaki Y, Morimoto K, Nakayama K, Shibata E, Tanaka M, Takigawa T, Yoshimura T, et al. The relationship between exposure to microbial volatile organic compound and allergy prevalence in single-family homes. Sci Total Environ 2012;423:18-26.   DOI
23 Herr CE, zur Nieden A, Bödeker RH, Gieler U, Eikmann TF. Ranking and frequency of somatic symptoms in residents near composting sites with odor annoyance. Int J Hyg Environ Health 2003;206:61-4.   DOI
24 Syhre M, Scotter JM, Chambers ST. Investigation into the production of 2-pentylfuran by Aspergillus fumigatus and other respiratory pathogens in vitro and human breath samples. Med Mycol 2008;46:209-15.   DOI
25 Glittenberg MT, Silas S, MacCallum DM, Gow NA, Ligoxygakis P. Wild-type Drosophila melanogaster as an alternative model system for investigating the pathogenicity of Candida albicans. Dis Model Mech 2011;4:504-14.   DOI
26 Hamilos G, Samonis G, Kontoyiannis DP. Recent advances in the use of Drosophila melanogaster as a model to study immunopathogenesis of medically important filamentous fungi. Int J Microbiol 2012;2012:583792.
27 Lionakis MS, Kontoyiannis DP. Drosophila melanogaster as a model organism for invasive aspergillosis. Methods Mol Biol 2012;845:455-68.
28 Lionakis MS, Kontoyiannis DP. The growing promise of Tolldeficient Drosophila melanogaster as a model for studying Aspergillus pathogenesis and treatment. Virulence 2010;1:488-99.   DOI
29 Khush RS, Leulier F, Lemaitre B. Immunology. Pathogen surveillance: the flies have it. Science 2002;296:273-5.   DOI
30 Alarco AM, Marcil A, Chen J, Suter B, Thomas D, Whiteway M. Immune-deficient Drosophila melanogaster: a model for the innate immune response to human fungal pathogens. J Immunol 2004;172:5622-8.   DOI
31 Tzou P, De Gregorio E, Lemaitre B. How Drosophila combats microbial infection: a model to study innate immunity and host-pathogen interactions. Cur Opin Microbiol 2002;5:102-10.   DOI
32 Ben-Ami R, Lamaris GA, Lewis RE, Kontoyiannis DP. Interstrain variability in the virulence of Aspergillus fumigatus and Aspergillus terreus in a Toll-deficient Drosophila fly model of invasive aspergillosis. Med Mycol 2010;48:310-7.   DOI
33 Vodovar N, Acosta C, Lemaitre B, Boccard F. Drosophila: a polyvalent model to decipher host-pathogen interactions. Trends Microbiol 2004;12:235-42.   DOI
34 Strobel GA, Dirkse E, Sears J, Markworth C. Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology 2001;147(Pt 11):2943-50.   DOI
35 World Health Organization. Guidelines for indoor air quality: dampness and mold. Rheinbach: Druckpartner Moser; 2009.
36 Molhave L. Volatile organic compounds and sick building syndrome. In: Lippmann M, editor. Environmental toxicants: human exposures and their health effects. 3rd ed. Hoboken (NJ): John Wiley & Sons Inc.; 2008. p. 241-56.
37 Morath SU, Hung R, Bennett JW. Fungal volatile organic compounds: a review with emphasis on their biotechnological potential. Fungal Biol Rev 2012;26:73-83.   DOI
38 Strobel G. Harnessing endophytes for industrial microbiology. Curr Opin Microbiol 2006;9:240-4.   DOI
39 Kreja L, Seidel HJ. Evaluation of the genotoxic potential of some microbial volatile organic compounds (MVOC) with the comet assay, the micronucleus assay and the HPRT gene mutation assay. Mutat Res 2002;513:143-50.   DOI
40 Kreja L, Seidel HJ. On the cytotoxicity of some microbial volatile organic compounds as studied in the human lung cell line A549. Chemosphere 2002;49:105-10.   DOI
41 Walinder R, Ernstgard L, Norback D, Wieslander G, Johanson G. Acute effects of 1-octen-3-ol, a microbial volatile organic compound (MVOC): an experimental study. Toxicol Lett 2008;181:141-7.   DOI
42 Binder U, Maurer E, Lass-Florl C. Galleria mellonella: an invertebrate model to study pathogenicity in correctly defined fungal species. Fungal Biol 2016;120:288-95.   DOI
43 Inamdar AA, Zaman T, Morath SU, Pu DC, Bennett JW. Drosophila melanogaster as a model to characterize fungal volatile organic compounds. Environ Toxicol 2014;29:829-36.   DOI
44 Zhao G, Yin G, Inamdar AA, Luo J, Zhang N, Yang I, Buckley B, Bennett JW. Volatile organic compounds emitted by filamentous fungi isolated from flooded homes after Hurricane Sandy show toxicity in a Drosophila bioassay. Indoor Air 2016;27:518-28.
45 Zaas AK, Liao G, Chien JW, Weinberg C, Shore D, Giles SS, Marr KA, Usuka J, Burch LH, Perera L, et al. Plasminogen alleles influence susceptibility to invasive aspergillosis. PLoS Genet 2008;4:e1000101.   DOI
46 Desoubeaux G, Cray C. Rodent models of invasive aspergillosis due to Aspergillus fumigatus: still a long path toward standardization. Front Microbiol 2017;8:841.   DOI
47 Apidianakis Y, Rahme LG, Heitman J, Ausubel FM, Calderwood SB, Mylonakis E. Challenge of Drosophila melanogaster with Cryptococcus neoformans and role of the innate immune response. Eukaryotic Cell 2004;3:413-9.   DOI
48 Chamilos G, Lionakis MS, Lewis RE, Kontoyiannis DP. Role of mini-host models in the study of medically important fungi. Lancet Infect Dis 2007;7:42-55.   DOI
49 Lamaris GA, Chamilos G, Lewis RE, Kontoyiannis DP. Virulence studies of Scedosporium and Fusarium species in Drosophila melanogaster. J Infect Dis 2007;196:1860-4.   DOI
50 Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spätzle/Toll/ cactus controls the potent antifungal response in Drosophila adults. Cell 1996;86:973-83.   DOI
51 Lemaitre B, Reichhart JM, Hoffmann JA. Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc Natl Acad Sci U S A 1997;94:14614-9.   DOI
52 Mylonakis E, Casadevall A, Ausubel FM. Exploiting amoeboid and non-vertebrate animal model systems to study the virulence of human pathogenic fungi. PLoS Pathog 2007;3:e101.   DOI
53 Lemfack MC, Nickel J, Dunkel M, Preissner R, Piechulla B. mVOC: a database of microbial volatiles. Nucleic Acids Res 2013;42:D744-8.
54 Lionakis MS, Lewis RE, May GS, Wiederhold NP, Albert ND, Halder G, Kontoyiannis DP. Toll-deficient Drosophila flies as a fast, high-throughput model for the study of antifungal drug efficacy against invasive aspergillosis and Aspergillus virulence. J Infect Dis 2005;191:1188-95.   DOI
55 Bhabhra R, Miley MD, Mylonakis E, Boettner D, Fortwendel J, Panepinto JC, Postow M, Rhodes JC, Askew DS. Disruption of the Aspergillus fumigatus gene encoding nucleolar protein CgrA impairs thermotolerant growth and reduces virulence. Infect Immun 2004;72:4731-40.   DOI
56 Herrmann A. The chemistry and biology of volatiles. Hoboken (NJ): Wiley; 2010.
57 Bennett JW, Inamdar AA. Are some fungal volatile organic compounds (VOCs) mycotoxins? Toxins (Basel) 2015;7:3785-804.   DOI
58 Korpi A, Järnberg J, Pasanen AL. Microbial volatile organic compounds. Crit Rev Toxicol 2009;39:139-93.   DOI
59 Gao P, Korley F, Martin J, Chen BT. Determination of unique microbial volatile organic compounds produced by five Aspergillus species commonly found in problem buildings. AIHA J (Fairfax, Va) 2002;63:135-40.   DOI
60 Polizzi V, Delmulle B, Adams A, Moretti A, Susca A, Picco AM, Rosseel Y, Kindt RT, Van Bocxlaer J, De Kimpe N, et al. JEM spotlight: fungi, mycotoxins and microbial volatile organic compounds in mouldy interiors from water-damaged buildings. J Environ Monit 2009;11:1849-58.   DOI
61 Cabral JP. Can we use indoor fungi as bioindicators of indoor air quality? Historical perspectives and open questions. Sci Total Environ 2010;408:4285-95.   DOI
62 Inamdar AA, Masurekar P, Hossain M, Richardson JR, Bennett JW. Signaling pathways involved in 1-octen-3-ol-mediated neurotoxicity in Drosophila melanogaster: implication in Parkinson's disease. Neurotox Res 2014;25:183-91.   DOI
63 Yin G, Padhi S, Lee S, Hung R, Zhao G, Bennett JW. Effects of three volatile oxylipins on colony development in two species of fungi and on Drosophila larval metamorphosis. Curr Microbiol 2015;71:347-56.   DOI
64 Inamdar AA, Masurekar P, Bennett JW. Neurotoxicity of fungal volatile organic compounds in Drosophila melanogaster. Toxicol Sci 2010;117:418-26.   DOI
65 Inamdar AA, Hossain MM, Bernstein AI, Miller GW, Richardson JR, Bennett JW. Fungal-derived semiochemical 1-octen-3-ol disrupts dopamine packaging and causes neurodegeneration. Proc Natl Acad Sci U S A 2013;110:19561-6.   DOI