• Title/Summary/Keyword: Void Ratio

Search Result 628, Processing Time 0.028 seconds

Leaching Characteristics on Clay Ground induced by Artesian Pressure (피압에 의한 점토 지반의 용탈 특성)

  • Yun, Daeho;Kim, Yuntae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.4
    • /
    • pp.97-104
    • /
    • 2016
  • This paper performed consolidation tests on soft ground with and without artesian pressure conditions to find out characteristics of leaching effects using two types of one-dimensional column equipment(height : 1,100mm, outer diameter : 250mm). Artesian pressure of 5.5kPa was applied to the bottom of soft ground inside column equipment. Distribution of salinity and shear strength with soil depth were measured after the consolidation test. From the results, it was found that distribution of undrained shear strength and salt concentrations were similar at the top of clay ground irrespective of artesian pressure condition. However, at the bottom of clay ground, the values of undrained shear strength and salt concentration under artesian pressure were lower than those without artesian pressure. This result indicates that structure of soft soil with artesian pressure was weakened by salt leaching. Electronic resistance results showed that void ratio under artesian pressure condition was more reduced than that without artesian pressure condition.

Tribological Properties of Ceramic Composite Friction Materials Reinforced by Carbon Fibers (탄소섬유가 혼합된 세라믹 복합재 제동마찰재의 마찰·마모 특성)

  • Goo, Byeong-Choon;Kim, Min-Soo
    • Tribology and Lubricants
    • /
    • v.33 no.1
    • /
    • pp.15-22
    • /
    • 2017
  • Because the running speed of vehicles is increasing and a shorter braking distance is required, high heat-resistant brake pads are needed to satisfy the requirements of customers and car makers. In the near future, hazardous materials such as Cu, Cr, Zn, and Sb will be restricted from use in friction materials. Ceramic composites reinforced by carbon fibers are good candidates for eco-friendly friction materials. In this study, we develop ceramic composite friction materials. The friction materials are composed of carbon fibers, Si, SiC, graphite, and phenol resin and are prepared by hot forming and heat treatment at high temperatures. The density, void ratio, and compressive strength are $1.59-1.66g/cm^3$, 16.6-20, and 70-90 MPa, respectively. Friction and wear tests are performed using a pin-on-plate-type reciprocating friction tester at 25, 100, and $200^{\circ}C$. The counterpart material is a CrMoV steel extracted from a KTX brake disc. Friction coefficient, wear amount, and wear mechanism are measured and examined. We determine that the friction coefficients depend on the temperature and the fluctuation of the friction coefficients is larger at higher temperatures. The amount of wear increases with the surface temperatures of the specimens. The tribological properties of the developed composites are similar to those of a Cu-based sintered friction material. Through this study, it is confirmed that ceramic composite materials can be used as friction materials.

Growth Properties of Sputtered ZnO Thin Films Affected by Oxygen Partial Pressure Ratio (산소분압비에 따른 ZnO 박막의 성장특성)

  • Kang, Man-Il;Kim, Moon-Won;Kim, Yong-Gi;Ryu, Ji-Wook;Jang, Han-O
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.3
    • /
    • pp.204-210
    • /
    • 2008
  • ZnO thin films were grown on a glass by RF sputtering system with RF power 100W and oxygen partial pressure of $0%{/sim}30%$. Elliptic constants were measured by using a phase modulated spectroscopic ellipsometer and analyzed with the Tauc-Lorentz dispersion formula and best fit method in the range of 1.5 to 3.8eV. Also, scanning electron microscope(SEM) was used for the analysis of surface crystallization condition. From elliptic constants spectra, optical constants, thickness and roughness of ZnO films were evaluated. Total thickness of ZnO films obtained by ellipsometry showed good agreement with SEM data. It was found that the grain size of the films were getting smaller with increasing oxygen partial pressure. Band-gap of ZnO films increase with the oxygen partial pressure. These findings clearly indicate that optical properties of ZnO films are strongly dependent on the oxygen partial pressure. It could be explained that increasing the oxygen partial pressure induced high crystalline imperfection in the ZnO films.

Assessment on Consolidation Material Function and Initial Stress for Soft Ground by Hydraulic Fill the at Southern Coast of Korea (남해안 준설매립 연약지반에 대한 압밀 물질함수 및 초기응력 산정)

  • Jeon, Je Sung;Koo, Ja Kap
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.136-145
    • /
    • 2011
  • For a massive project related to building national industrial complexes on a soft ground applied to PVD after dredging and hydraulic fill, laboratory tests were carried out using undisturbed sample taken from various depth. Piezocone penetration and dissipation tests were carried out to assess horizontal coefficient of consolidation and initial stress in field. The ground consists of upper dredged fill and lower original clay layer having both similar marine clays. It should be, however, considered as multi-layered soft ground having different initial void ratio, initial water content, initial effective stress, and permeability and compressibility with directions. To assess initial stress of those soft layers in which have different stress history related to consolidation, CPTu test results, especially excess pore water pressure, were analyzed. It allows to find out distribution of excess pore water pressure and initial stress inner original clay layer.

Comparison of Stability Coefficients of Radial Shape Armor Blocks Depending on Placement Methods (피복 방법에 따른 방사형 소파 블록의 안정계수 비교)

  • Min, Eun-Jong;Cheon, Se-Hyeon;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.2
    • /
    • pp.135-141
    • /
    • 2015
  • In this study, two different uniform placement methods are proposed for each of Tetrapod, Rakuna-IV, and Dimple armoring a rubble mound breakwater, and the corresponding stability coefficients are determined by hydraulic experiments. The Tetrapod and Rakuna-IV show similar stability coefficients regardless of the placement methods, whereas the Dimple shows somewhat different stability coefficients depending on the placement methods. It is shown that the Dimple gives the largest stability coefficient, whereas the Tatrapod gives the smallest value. The uniform placement methods of Tatrapod and Rakuna-IV give slightly larger stability coefficients than the random placement, whereas the uniform placements of Dimple give much larger stability coefficients than the random placement. However, the small void ratio of uniform placements of Dimple requires attention because the blocks would behave like single layer system blocks so that brittle failure could occur.

Characteristics of Deformation and Shear Strength of a Sandy Soil Deposited on the SAEMANKEUM Sea (새만금지역 해상에 퇴적된 사질토의 변형 및 전단강도 특성)

  • Lee, Kang-Il;Ju, Jae-Woo;Lee, Jin-Soo;Choi, Jong-Pyo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.3
    • /
    • pp.29-37
    • /
    • 2010
  • This study aims at evaluating the engineering properties of very poor graded fine sands deposited on the sea. Using materials sampled at SAEMANKEUM area, a series of rowe cell consolidation tests and triaxial compression tests are conducted in order to evaluate the characteristics of deformation and shear strength by the relative density. Prior to those tests, a maximum and a minimum relative densities are obtained. As a result, it appears that the minimum void ratio is 0.88, and the maximum compactible relative density is about 71%. In addition, internal frictional angle appears to increase linearly with an increase of the relative density which is similar to that of the port KUNJANG.

  • PDF

Incorporation of CrusHed Sands and Tunisian Desert Sands in the Composition of Self Compacting Concretes Part I: Study of Formulation

  • Rmili, Abdelhamid;Ouezdou, Mongi Ben;Added, Mhamed;Ghorbel, Elhem
    • International Journal of Concrete Structures and Materials
    • /
    • v.3 no.1
    • /
    • pp.3-9
    • /
    • 2009
  • This paper examines the incorporation of the crushed sand (CS) and desert sand (DS) in the formation of self compacting concrete (SCC). These sands have been substituted for the rolled sand (RS), which is currently the only sand used in concretes and which is likely to run out in our country. DS, which comes from the Tunisian Sahara in the south, is characterized by a tight distribution of grains size. CS, a by-product of careers containing a significant amount of fines up to 15%, is characterized by a spread out granulometry having a maximum diameter of around 5mm. These two sands are considered as aggregates for the SCC. This first part of the study consists in analyzing the influence of the type of sand on the parameters of composition of the SCC. These sands consist of several combinations of 3 sands (DS, CS and RS). The method of formulation of the adopted SCC is based on the filling of the granular void by the paste. The CS substitution to the RS made it possible, for all the proportions, to decrease the granular voids, to increase the compactness of the mixture and to decrease the water and adding fillers proportioning. These results were also obtained for a moderate substitution of DS/CS (< 40%) and a weak ratio of DS/RS (20%). For higher proportions, the addition of DS to CS or RS did not improve the physical characteristics of the SCC granular mixture.

Prediction of Slope Hazard Probability around Express Way using Decision Tree Model (의사결정나무모형을 이용한 고속도로 주변 급경사지재해 발생가능성 예측)

  • Kim, Chan-Kee;Bak, Gueon Jun;Kim, Joong Chul;Song, Young-Suk;Yun, Jung-Mann
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.2
    • /
    • pp.67-74
    • /
    • 2013
  • In this study, the prediction of slope hazard probability was performed to the study area located in Hadae-ri, Woochun-myeon, Hoengsung-gun, Gangwon Province around Youngdong express way using the computer program SHAPP ver 1.0 developed by a decision tree model. The soil samples were collected at total 10 points, and soil tests were performed to measure soil properties. The thematic maps of soil properties such as coefficient of permeability and void ratio were made on the basis of soil test results. The slope angle analysis of topography was performed using a digital map. As the prediction result of slope hazard probability, 2,120 cells among total 27,776 cells were predicted to be in the event of slope hazards. Therefore, the predicted area of occurring slope hazards may be $53,000m^2$ because the analyzed cell size was $5m{\times}5m$.

River Embankment Integrity Evaluation using Numerical Analysis (수치해석을 이용한 하천제방의 건전도 평가)

  • Byun, Yo-Seph;Jung, Hyuk-Sang;Kim, Jin-Man;Choi, Bong-Hyuck;Kim, Kyung-Min;Chun, Byung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.524-528
    • /
    • 2009
  • An influence factors for soundness evaluation of river levee include resistibility and embankment for piping of ground consisting embankment in case piping, permeability coefficient of ground, height of embankment, the width of crest, material characteristics of embankment and foundation ground, shape of embankment slope, an influence for penetration of rainfall or river water in case slope stability. In this study, it was operated a feasibility investigation of existing design result, stability evaluation for permeability coefficient use and permeability coefficient change of foundation ground to investigate an influence in line with permeability coefficient change for result of river levee penetration analysis. The evaluation results of influence factors, the permeability coefficient used in design and it was evaluated influence in safety factor of piping. After the evaluation of influence factors, the permeability coefficient used in the design appears with the fact that differs in a design report about same soil, Accordingly, the stability investigation of embankment by application of literature data can affect stability evaluation results by change factors like a permeability coefficient, void ratio. It should be certainly used material properties by a test in soundness evaluation of river levee.

  • PDF

Influencing Factors on Freezing Characteristics of Frost Susceptible Soil Based on Sensitivity Analysis (민감도 분석을 기반으로 한 시료의 동결 특성에 미치는 영향인자 분석)

  • Go, Gyu-Hyun;Lee, Jangguen;Kim, Minseop
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.8
    • /
    • pp.49-60
    • /
    • 2020
  • A fully coupled thermo-hydro-mechanical model is established to evaluate frost heave behaviour of saturated frost-susceptible soils. The method is based on mass conservation, energy conservation, and force equilibrium equations, which are fully coupled with each other. These equations consider various physical phenomena during one-dimensional soil freezing such as latent heat of phase change, thermal conductivity changes, pore water migration, and the accompanying mechanical deformation. Using the thermo-hydro-mechanical model, a sensitivity analysis study is conducted to examine the effects of the geotechnical parameters and external conditions on the amount of frost heave and frost heaving rate. According to the results of the sensitivity analysis, initial void ratio significantly affects each objective as an individual parameter, whereas soil particle thermal conductivity and temperature gradient affect frost heave behaviour to a greater degree when applied simultaneously. The factors considered in this study are the main factors affecting the frost heaving amount and rate, which may be used to determine the frostbite sensitivity of a new sample.