• Title/Summary/Keyword: Void Rate

Search Result 260, Processing Time 0.026 seconds

Effect of Surface Film on Void Behavior in Composite Integrated Structure (표면접착필름이 복합재 일체형 구조물에서의 기공 거동에 미치는 영향)

  • Park, Dong-Cheol;Kim, Yun-Hae
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.147-152
    • /
    • 2020
  • In this study, void behavior of composite laminate by local internal pressure gradient due to structural geometry and surface film application condition was experimentally evaluated through fabrication of spar/skin integrated structure specimens. Viscosity comparison and thermal analysis for both carbon fiber prepreg and surface film were conducted and cure characteristic and rate difference were analyzed. 2 types of spar/skin integrated structural specimens were prepared based on different application condition of surface film. Subsequently, those specimens were evaluated through visual surface inspection, non-destructive and destructive inspection. In a specimen #1 with full application of surface film, low pressurized area of composite laminate created by pressure gradient of structural geometry had voids. It exhibited that voids could not be evacuated and were locked in cured laminate by the influence of pre-cured surface film with relatively faster cure rate. In a specimen #2 without surface film, it revealed that all internal voids disappeared in the cured laminate. Therefore, it is verified that surface film acts as barrier film preventing void movement and evacuation during autoclave cure.

The Characteristics of Two Phase Flow by Non-Newtonian Fluid for Vertical Up-ward in a Tube (수직 상향유동 배관에서 비뉴톤유체에 의한 2상류의 유동특성)

  • Cha K.O.;Kim J. G.;Che K.S.
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.4
    • /
    • pp.53-59
    • /
    • 1998
  • Flow pattern of air-water two phase flow depends on the conditions of pressure drop, void fraction, and channel geometry. Drag reduction in the two phase flow can be applied to the transport of crude oil, phase change systems such as chemical reactor, pool and boiling flow, and to present cavitation which occurs in pump impellers. But the research on drag reduction in two phase flow is not intensively investigated. Therefore, experimental investigations have been carried out to analyze the drag reduction produced and void fraction by Co-polymer(A611p) addition in the two phase flow system. We find that the maximum point position of local void friction moves from the wall of the pipe to the center of the pipe when polymer concentration increases. Also we find that the polymer solution changes the characteristics of the two phase flow. And then we predict that it is closely related with the drag reduction.

  • PDF

Artifical Groundwater Recharge Using Underground Piping Method

  • Ahn, Sang-Jin;Lee, Jong-Hyong
    • Korean Journal of Hydrosciences
    • /
    • v.3
    • /
    • pp.11-29
    • /
    • 1992
  • Recently, rapid industrialization, urbanization and higher living standards accelerate to increase groundwater consumption resulting in continuously dropping groundwater elevations. To maintain enough groundwater volume without dropping groundwater elevations, the proper groundwater rechatge is necessary. The groundwater rechatge can be classified into two categories which are natural rechatge and artiticial rechatge. Even though the natural rechatge through by dired infiltration from the rainfall is desirable, the artificial groundwater rechatge is necessaty when the increment of groundwater consumption exceeds natural recharge rate. Well method and scattering method are utilized as artificial rechatging method, a severe disadvantage, which is the reduction of the void of soil surface, is indicated in the well method. Recently, the underground piping method, which is a scattering method, is receiving increasing attention as a proper recharging method. The method is indirectly to supply water to the underground using an underground piping system. Therefore, the void of soil surface is not severely reduced and better infiltration rate can be achieved. In this paper, the artificial groundwater rechatge using underground piping method is investigated through experiments and numerical analysis. The influence of the groundwater by underground piping method is evaluated through comparing recharging heights. Good agreements between experiments and numerical analysis are obtained and the artificial groundwater recharge by underground piping method is well tested and verified.

  • PDF

Distribution of Grown-in Defects in the Fast-pulled Czochralski-silicon Single Crystals (고속 인상 초크랄스키 실리콘 단결정에서 성장 결함 분포)

  • 박봉모;서경호;오현정;이홍우;유학도
    • Korean Journal of Crystallography
    • /
    • v.14 no.2
    • /
    • pp.84-92
    • /
    • 2003
  • The fast pulling is easy to modify the distribution of grown-in defects toward fine size, which can be readily removed by additional treatment. In this experiment, The fast pulled crystals with high pulling late over 1.0 mm/min were grown and their grown-in defect distributions were investigated. In our recent developments in the growth of Cz-Si, it could be found that the cooling rate in a specific temperature range and the uniformity of temperature gradient at solid/liquid interface are more important for the formation of grown-in defect than the pulling rate itself. We analyzed these cooling rates and temperature gradients for the various fast pulled crystals and compared them to the observed formation behavior of the grown-in defects. The effective factor (Ω) for the void defect formation was introduced and it could explain the radial distribution of void defects in the fast-pulled crystals effectively.

Characteristic of GaN Growth on the Periodically Patterned Substrate for Several Reactor Configurations (반응로 형상에 따른 주기적으로 배열된 패턴위의 GaN 성장 특성)

  • Kang, Sung-Ju;Kim, Jin-Taek;Pak, Bock-Choon;Lee, Cheul-Ro;Baek, Byung-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.3 s.258
    • /
    • pp.225-233
    • /
    • 2007
  • The growth of GaN on the patterned substances has proven favorable to achieve thick, crack-free GaN layers. In this paper, numerical modeling of transport and reaction of species is performed to estimate the growth rate of GaN from tile reaction of TMG(trimethly-gallium) and ammonia. GaN growth rate was estimated through the model analysis including the effect of species velocity, thermal convection and chemical reaction, and thermal condition for the uniform deposition was to be presented. The effect of shape and construction of microscopic pattern was also investigated using a simulator to perform surface analysis, and a review was done on the quantitative thickness and shape in making GaN layer on the pattern. Quantitative analysis was especially performed about the shape of reactor geometry, periodicity of pattern and flow conditions which decisively affect the quality of crystal growth. It was found that the conformal deposition could be obtained with the inclination of trench ${\Theta}>125^{\circ}$. The aspect ratio was sensitive to the void formation inside trench and the void located deep in trench with increased aspect ratio.

Optimization of CANFLEX-RU Fuel Bundle for CANDU-6

  • Lee, Y. O.;C. J. Jeong;K. S. Sim;J. S. Jun;Park, G. S.;Kim, B. G.;Park, J. H.;H. C. Suk
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.35-40
    • /
    • 1995
  • Considering the higher discharge burnup, lower channel refuelling rate, lower linear element rating(LER), lower coolant void reactivity and axial power shape, CANFLEX-RU fuel bundle is optimized for CANDU-6 by grading the fissile composition in the ring-wise of the bundle and by applying fuel management scheme appropriately. The fissile composition of the fuel bundle is graded as the recovered uranium (0.9 w/o U-235) in the outer and intermediate elements, depleted Uranium (0.2 w/o U-235) in the center element, natural uranium (0.71 w/o U-235) in the inner elements. Enrichment is not required for these fuel. The fissile composition is optimized by lattice calculation and by time-averaged reactor simulation. CANFLEX-RU optimized for CANDU-6 resulted to be the 15% lower channel refuelling rate, acceptable axial power profile and power envelope, 70% higher discharge burnup, 15% lower LER and not increase coolant void reactivity compared with the 37-element natural uranium bundle for CANDU-6.

  • PDF

Analysis Method for Non-Linear Finite Strain Consolidation for Soft Dredged Soil Deposit -Part I: Parameter Estimation for Analysis (초연약 준설 매립지반의 비선형 유한변형 압밀해석기법 -Part I: 해석 물성치 평가)

  • Kwak, Tae-Hoon;Lee, Chul-Ho;Lim, Jee-Hee;An, Yong-Hoon;Choi, Hang-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.9
    • /
    • pp.13-24
    • /
    • 2011
  • The renowned Terzaghi's one-dimensional consolidation theory is not applicable to quantification of time-rate settlement for highly deformable soft clays such as dredged soil deposits. To deal with this special condition, a non-linear finite strain consolidation theory should be adopted to predict the settlement of dredged soil deposits including self-weight and surcharge-induced consolidation. It is of importance to determine the zero effective stress void ratio ($e_{00}$), which is the void ratio at effective stress equal to zero, and the relationships of void ratio-effective stress and of void ratio-hydraulic conductivity for characterizing non-linear finite strain consolidation behavior for deformable dredged soil deposits. The zero effective stress void ratio means a transitional status from sedimentation to self-weight consolidation of dredged soils. In this paper, laboratory procedures and equipments are introduced to measure such key parameters in the non-linear finite strain consolidation analysis. In addition, the non-linear finite strain consolidation parameters of the Incheon clay and kaolinite are evaluated with the aid of the proposed methods in this paper, which will be used as input parameters for the non-linear finite strain consolidation analyses being performed in the companion paper.

A study on Crack Healing of Various Glassy Polymers (part I) -theoretical modeling- (유리질 중합체의 균열 Healing에 관한 연구 (제1보) -이론 모델링-)

  • Lee, Ouk-Sub
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.3 no.1
    • /
    • pp.40-49
    • /
    • 1986
  • Crack, craze and void are common defects which may be found in the bulk of polymeric materials such as either themoplastics or thermosets. The healing phenomena, autohesion, of these defects are known to be a intrinsic material property of various polymeric materials. However, only a few experimental and theoretical investigations on crack, void and craze healing phenomena for various polymeric materials have been reported up to date [1, 2, 3]. This may be partly due to the complications of healing processes and lacking of appropriate theoretical developments. Recently, some investigators have been urged to study the healing phenomena of various polymenic materials since the significance of the use of polymer based alloys or composites has been raised in terms of specific strength and energy saving. In the earlier published reports [1, 2, 3, 4], the crack and void healing velocity, healing toughness and some other healing mechanical and physical properties were measured experimentally and compared with predicted values by utilizing a simple model such as the reptation model under some resonable assumptions. It seems, however, that the general acceptance of the proposed modeling analyses is yet open question. The crack healing processes seem to be complicate and highly dependent on the state of virgin material in terms of mechanical and physical properties. Furthermore, it is also strongly dependent on the histories of crack, craze and void development including fracture suface morphology, the shape of void and the degree of disentanglement of fibril in the craze. The rate of crack healing may be a function of environmental factors such as healing temperature, time and pressure which gives different contact configurations between two separated surfaces. It seems to be reasonable to assume that the crack healing processes may be divided in several distinguished steps like stress relaxation with molecular chain arrangement, surface contact (wetting), inter- diffusion process and com;oete healing (to obtain the original strength). In this context, it is likely that we no longer have to accept the limitation of cumulative damage theories and fatigue life if it is probable to remove the defects such as crack, craze and void and to restore the original strength of polymers or polymer based compowites by suitable choice of healing histories and methods. In this paper, we wish to present a very simple and intuitive theoretical model for the prediction of healed fracture toughness of cracked or defective polymeric components. The central idea of this investigation, thus, may be the modeling of behavior of chain molecules under healing conditions including the effects of chain scission on the healing processes. The validity of this proposed model will be studied by making comparisons between theoretically predicted values and experimentally determined results in near future and will be reported elsewhere.

  • PDF

Study on the Void Growth and Coalescence in F.C.C. Single Crystals (F.C.C. 단결정재에서 기공의 성장과 합체에 관한 연구)

  • Ha, Sang-Yul;Kim, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.4
    • /
    • pp.319-326
    • /
    • 2008
  • In this study, we investigate the deformation behavior of F.C.C. single crystals containing micro- or submicron-sized voids by using three dimensional finite element methods. The locally homogeneous constitutive model for the rate-dependent crystal plasticity is integrated based on the backward Euler method and implemented into a finite element program (ABAQUS) by means of user-defined subroutine (UMAT). The unit cell analysis has been investigated to study the effect of stress triaxiality and crystallographic orientations on the growth and coalescence of voids in F.C.C. single crystals.

Experimental study on flow pattern transitions for inclined two-phase flow (경사각 이상유동양식 천이에 관한 실험적 연구)

  • Kwak, Nam-Yee;Kim, Man-Woong;Lee, Jae-Young
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3021-3026
    • /
    • 2007
  • In this paper, experimental data on flow pattern transition of inclination angles from 0-90 are presented. A test section is constructed 2 mm long and I.D 1inch using transparent material. The test section is supported by aluminum frame that can be placed with any arbitrary inclined angles. The air-water two-phase flow is observed at room temperature and atmospheric condition using both high speed camera and void impedance meter. The signal is sampled with sampling rate 1kHz and is analyzed under fully-developed condition. Based on experimental data, flow pattern maps are made for various inclination angles. As increasing the inclination angels from 0 to 90, the flow pattern transitions on the plane jg-jf are changed, such as stratified flow to plug flow or slug flow or plug flow to bubbly flow. The transition lines between pattern regimes are moved or sometimes disappeared due to its inclined angle.

  • PDF