• Title/Summary/Keyword: Void Rate

Search Result 260, Processing Time 0.022 seconds

The Estimation of Compacted State on Sea Dike Embankment with the Interrelationships Between the Hydraulic Head Loss Rate, the Hydraulic Conductivity and the Void Ratio (수두손실률, 투수계수 및 공극비의 상호관계를 통한 제체의 다짐상태 평가)

  • Eam, Sung Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.1
    • /
    • pp.11-23
    • /
    • 2015
  • In this study the laboratory test for hydraulic conductivity and the seepage analysis with finite element method on measurement section of sea dike embankment were performed for the purpose of estimating the relative density of embankment from the measured pore water pressures, and both results of the test and the analysis were coupled with the method of estimating seepage blocking state with the hydraulic head loss rate in sea dike embankment. The relationship of void ratio vs hydraulic head loss rate was obtained by setting hydraulic conductivity as common ordinate on the relationships between the void ratio and the hydraulic conductivity and between the hydraulic conductivity and the hydraulic head loss rate. The void ratio on the segment between measuring points was calculated from the coupled relationship of the void ratio vs the hydraulic conductivity. The allowable upper and lower limits of hydraulic head loss rate and those of void ratio on the safety were generated from the coupled relationship between the laboratory compaction test and the sedimentation test. Current hydraulic head loss rate and void ratio were evaluated in the allowable range between upper and lower limits.

FE Analysis for the Prediction of Void Closure on the Free Forging Process of a Large Rotor (대형 로터의 자유단조공정에서 기공압착 예측을 위한 유한요소해석)

  • Lee, K.J.;Bae, W.B.;Kim, D.K.;Kim, Y.D.;Cho, J.R.
    • Transactions of Materials Processing
    • /
    • v.16 no.2 s.92
    • /
    • pp.126-131
    • /
    • 2007
  • Voids in a large rotor are formed in solidification process of a cast ingot. The voids have to be eliminated from the rotor by a forming process, because they would became stress-intensity factors which suddenly fracture the rotor in the operation. Previous studies on void-elimination of a large rotor have mainly focused on finding the process variables affecting the void-closure. But the study on the amount of void closure in a large rotor has been very rare. This study was performed to obtain an equation which predicts the amount of void-closure in a forging process of a large rotor and to evaluate the availability of the void-closure equation through finite element analyses. Firstly, 2D FE analysis was carried out to find effects of time integral of hydrostatic stress and effective strain on void volume rate of a large rotor in the upsetting process for various diameters and shapes of void, and material temperature. From the 2D FE analysis, we found that effective strain was suitable for predicting the void-closure of a large rotor, because there was a constant relationship between void volume rate and effective strain. And a void-closure equation was proposed fur predicting void-closure of a large rotor in the upsetting process. Finally, ken the 3D FE analysis, the proposed void-closure equation was verified to be useful for upsetting and cogging processes.

Experimental study on analysis of correlation between void fraction and drag reduction rate in air lubrication ship (공기윤활선 모사 실험에서의 공극률 및 마찰저항저감율 상관성 분석을 위한 실험적 연구)

  • Park, Seungchan;Lee, Inwon
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.1
    • /
    • pp.11-17
    • /
    • 2020
  • The reduction of CO2 emissions has been a key target in the marine industry since the IMO's MEPC published its findings in 2009. Air lubrication method is one of the mature technologies for commercialization to reduce the frictional resistance and enhance fuel efficiency of ships. Since the air lubrication pattern varies according to the ship's standing position and injection flow rate, in order to effectively control the air lubrication system, it is necessary to be able to judge the air layer development state based on the information collected from the monitoring sensor. In this study, we performed the air lubrication ship simulation experiment to measure the void fraction and the frictional resistance. The void fraction was measured to confirm the behavior of the air. Through the measurement of the frictional resistance, the change in frictional resistance reduction rate from the injection point to the longitudinal direction of the ship was confirmed. Based on the measurement results, correlation analysis was performed on void fraction and frictional resistance reduction rate.

A combined experimental and numerical study on the plastic damage in microalloyed Q345 steels

  • Li, Bin;Mi, Changwen
    • Structural Engineering and Mechanics
    • /
    • v.72 no.3
    • /
    • pp.313-327
    • /
    • 2019
  • Damage evolution in the form of void nucleation, propagation and coalescence is the primary cause that is responsible for the ductile failure of microalloyed steels. The Gurson-Tvergaard-Needleman (GTN) damage model has proven to be extremely robust for characterizing the microscopic damage behavior of ductile metals. Nonetheless, successful applications of the model on a given metal type are limited by the correct identification of damage parameters as well as the validation of the calculated void growth rate. The purpose of this study is two-fold. First, we aim to identify the damage parameters of the GTN model for Q345 steel (Chinese code), due to its extensive application in mechanical and civil industries in China. The identification of damage parameters is facilitated by the well-suited response surface methodology, followed by a complete analysis of variance for evaluating the statistical significance of the identified model. Second, taking notched Q345 cylinders as an example, finite element simulations implemented with the identified GTN model are performed in order to analyze their microscopic damage behavior. In particular, the void growth rate predicted from the simulations is successfully correlated with experimentally measured acoustic emissions. The quantitative correlation suggests that during the yielding stage the void growth rate increases linearly with the acoustic emissions, while in the strain-hardening and softening period the dependence becomes an exponential function. The combined experimental and finite element approach provides a means for validating simulated void growth rate against experimental measurements of acoustic emissions in microalloyed steels.

A Study on the Measurement of Local Void Fraction (수직사각 유로내에서의 국부적 기포계수 측정에 관한 연구)

  • B.J. Yun;Kim, K.H.;Park, G.C.;C.H. Chung
    • Nuclear Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.168-177
    • /
    • 1992
  • The importance of the study of two phase flow phenomena has increased for both fuel performance and safety analysis of nuclear power plants. In the analysis of two phase flow system, an accurate prediction of local void fractions is very important. In this study, a vertical rectangular subchannel having 4 electrically heated rods is constructed for the measurement of local void fraction under two phase flow. The measurement has been conducted by electrical conductivity probes and signal processing circuit which are known to be adequate to measuring local void fraction. Also experiments are performed with varying the inlet flow rate to search for radial void fraction profile accordingly to the different flow rate even with the same averaged void fraction. From the result of experiments, the validity of electrical conductivity probe and electrical circuit is confirmed.

  • PDF

Studies on the Durable Properties of Porous Concrete for Permeable Pavement using Polymer (폴리머를 혼입한 투수성 포장용 콘크리트의 내구성능에 관한 실험적 연구)

  • Park Seong Bum;Seo Dae Seuk;Lee Byung Jae;Song Jae Lib;Son Sung Woo;Cho Kwang Yeon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.703-706
    • /
    • 2005
  • This study is analyzed mechanical properties and durability of pavement of a road permeability porous concrete to mix polymer for the enhance of porous concrete of performance and durability. As a result, void ratio showed the tendency which the mixing rate of polymer is decreased a little as increased. And, the influence of void ratio according to the kind of polymer has the difference, but void ratio showed the tendency which the mixing rate of polymer is decreased a little as increased. Compressive strength showed the tendency which the mixing rate of polymer is increased a little as increased. but, it showed the tendency to be reduced rather when above $20\%$ it mixed polymer mixing rate $10\%$ at apex.

  • PDF

An Application of Micropile to Restrain the Settlement of Structure on the Ground Surface caused by Shield Tail Void (실드테일보이드에 의해 발생하는 지표구조물의 침하 억제를 위한 마이크로파일의 적용)

  • 임종철;윤이환;박이근;고호성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.177-184
    • /
    • 1999
  • In soft ground tunneling, shield method is very good for safety of neighboring structures. Although shield tunnel method has the merits to minimize the deformation of ground around tunnel, ground deformations occurred until the material grouted in tail void hardens are inevitable. In this study, the effects of micropile used as one method to restrain the settlement of neighboring structures by the tail void are studied by laboratory model tests. As a basic test result, the effective direction of micropile and the restraint rate of settlement by micropile reinforcement are known.

  • PDF

CD 스터드 용접의 해석 및 결함 분석 Part 2 : 기공 제어

  • Oh Hyun-Seok;Yoo Choong-D.
    • Journal of Welding and Joining
    • /
    • v.24 no.3
    • /
    • pp.42-48
    • /
    • 2006
  • Since the voids occur at the CD stud welds, the mechanism of void formation and void reduction method are investigated in this work. It is speculated that the voids are formed because of high short-circuit current above 1000A. When the simple flow model is used to estimate the void trapping condition, the most voids are trapped at the weld mainly due to fast cooling rate of the CD stud weld. Since it is almost impossible to remove the voids completely, a method is proposed to reduce the void by decreasing the short-circuit current at the end of the arcing time. The experimental results show that the void is reduced by decreasing the short-circuit current to 1000A.

One-Dimensional Analysis of Air-Water Two Phase Natural Circulation Flow (공기와 물의 이상 자연순환 유동의 1 차원 해석)

  • Park, Rae-Joon;Ha, Kwang-Soon;Kim, Jae-Cheol;Hong, Seong-Wan;Kim, Sang-Baik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2626-2631
    • /
    • 2007
  • Air-water two phase natural circulation flow in the T-HERMES (Thermo-Hydraulic Evaluation of Reactor cooling Mechanism by External Self-induced flow)-1D experiment has been evaluated to verify and evaluate the experimental results by using the RELAP5/MOD3 computer code. The RELAP5 results have shown that an increase in the coolant inlet area leads to an increase in the water circulation mass flow rate. However, the water outlet area does not effective on the water circulation mass flow rate. As the coolant outlet moves to a lower position, the water circulation mass flow rate decreases. The water level is not effective on the water circulation mass flow rate. As the height increases in the air injection part, the void fraction increases. However, the void fraction in the upper part of the air injector maintains a constant value. An increase in the air injection mass flow rate leads to an increase in the local void fraction, but it is not effective on the local pressure.

  • PDF

The Study of void Closing Behavior in Upset Forging of Large Ingot (대형 잉곳의 업셋 단조에서의 기공 압착 거동에 관한 연구)

  • Lee K. J.;Bae W. B.;Cho J. R.;Kim D. K.;Kim J. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.406-409
    • /
    • 2005
  • In the forging operation of large ingot two break-down process are upsetting and cogging. The first purpose of upsetting is to ensure sufficient forging ratio for subsequent cogging operations and consolidate the voids along the centerline. The second purpose is related to improve the physical properties for a final product. Voids which are generated during the casting process can be one of the decisive defects of materials. So it is necessary to know the standard of Judgment for void-closure in upsetting operation. In practical conditions, FEM analysis(DEFORM 2D 8.1) was carried out to decide how much effective strain has influence on void-closure. It is finally suggested that the function consists of the effective strain of analysis data and the area rate of void.

  • PDF